Abstract:Diffusion models excel at generative modeling (e.g., text-to-image) but sampling requires multiple denoising network passes, limiting practicality. Efforts such as progressive distillation or consistency distillation have shown promise by reducing the number of passes at the expense of quality of the generated samples. In this work we identify co-variate shift as one of reason for poor performance of multi-step distilled models from compounding error at inference time. To address co-variate shift, we formulate diffusion distillation within imitation learning (DDIL) framework and enhance training distribution for distilling diffusion models on both data distribution (forward diffusion) and student induced distributions (backward diffusion). Training on data distribution helps to diversify the generations by preserving marginal data distribution and training on student distribution addresses compounding error by correcting covariate shift. In addition, we adopt reflected diffusion formulation for distillation and demonstrate improved performance, stable training across different distillation methods. We show that DDIL consistency improves on baseline algorithms of progressive distillation (PD), Latent consistency models (LCM) and Distribution Matching Distillation (DMD2).
Abstract:The detection and localization of deepfake content, particularly when small fake segments are seamlessly mixed with real videos, remains a significant challenge in the field of digital media security. Based on the recently released AV-Deepfake1M dataset, which contains more than 1 million manipulated videos across more than 2,000 subjects, we introduce the 1M-Deepfakes Detection Challenge. This challenge is designed to engage the research community in developing advanced methods for detecting and localizing deepfake manipulations within the large-scale high-realistic audio-visual dataset. The participants can access the AV-Deepfake1M dataset and are required to submit their inference results for evaluation across the metrics for detection or localization tasks. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection and localization systems. Evaluation scripts, baseline models, and accompanying code will be available on https://github.com/ControlNet/AV-Deepfake1M.
Abstract:While Low-Rank Adaptation (LoRA) has proven beneficial for efficiently fine-tuning large models, LoRA fine-tuned text-to-image diffusion models lack diversity in the generated images, as the model tends to copy data from the observed training samples. This effect becomes more pronounced at higher values of adapter strength and for adapters with higher ranks which are fine-tuned on smaller datasets. To address these challenges, we present FouRA, a novel low-rank method that learns projections in the Fourier domain along with learning a flexible input-dependent adapter rank selection strategy. Through extensive experiments and analysis, we show that FouRA successfully solves the problems related to data copying and distribution collapse while significantly improving the generated image quality. We demonstrate that FouRA enhances the generalization of fine-tuned models thanks to its adaptive rank selection. We further show that the learned projections in the frequency domain are decorrelated and prove effective when merging multiple adapters. While FouRA is motivated for vision tasks, we also demonstrate its merits for language tasks on the GLUE benchmark.
Abstract:Few-shot image synthesis entails generating diverse and realistic images of novel categories using only a few example images. While multiple recent efforts in this direction have achieved impressive results, the existing approaches are dependent only upon the few novel samples available at test time in order to generate new images, which restricts the diversity of the generated images. To overcome this limitation, we propose Conditional Distribution Modelling (CDM) -- a framework which effectively utilizes Diffusion models for few-shot image generation. By modelling the distribution of the latent space used to condition a Diffusion process, CDM leverages the learnt statistics of the training data to get a better approximation of the unseen class distribution, thereby removing the bias arising due to limited number of few shot samples. Simultaneously, we devise a novel inversion based optimization strategy that further improves the approximated unseen class distribution, and ensures the fidelity of the generated samples to the unseen class. The experimental results on four benchmark datasets demonstrate the effectiveness of our proposed CDM for few-shot generation.
Abstract:The scarcity of ground-truth labels poses one major challenge in developing optical flow estimation models that are both generalizable and robust. While current methods rely on data augmentation, they have yet to fully exploit the rich information available in labeled video sequences. We propose OCAI, a method that supports robust frame interpolation by generating intermediate video frames alongside optical flows in between. Utilizing a forward warping approach, OCAI employs occlusion awareness to resolve ambiguities in pixel values and fills in missing values by leveraging the forward-backward consistency of optical flows. Additionally, we introduce a teacher-student style semi-supervised learning method on top of the interpolated frames. Using a pair of unlabeled frames and the teacher model's predicted optical flow, we generate interpolated frames and flows to train a student model. The teacher's weights are maintained using Exponential Moving Averaging of the student. Our evaluations demonstrate perceptually superior interpolation quality and enhanced optical flow accuracy on established benchmarks such as Sintel and KITTI.
Abstract:In this paper, we introduce an open-vocabulary panoptic segmentation model that effectively unifies the strengths of the Segment Anything Model (SAM) with the vision-language CLIP model in an end-to-end framework. While SAM excels in generating spatially-aware masks, it's decoder falls short in recognizing object class information and tends to oversegment without additional guidance. Existing approaches address this limitation by using multi-stage techniques and employing separate models to generate class-aware prompts, such as bounding boxes or segmentation masks. Our proposed method, PosSAM is an end-to-end model which leverages SAM's spatially rich features to produce instance-aware masks and harnesses CLIP's semantically discriminative features for effective instance classification. Specifically, we address the limitations of SAM and propose a novel Local Discriminative Pooling (LDP) module leveraging class-agnostic SAM and class-aware CLIP features for unbiased open-vocabulary classification. Furthermore, we introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image. We conducted extensive experiments to demonstrate our methods strong generalization properties across multiple datasets, achieving state-of-the-art performance with substantial improvements over SOTA open-vocabulary panoptic segmentation methods. In both COCO to ADE20K and ADE20K to COCO settings, PosSAM outperforms the previous state-of-the-art methods by a large margin, 2.4 PQ and 4.6 PQ, respectively. Project Website: https://vibashan.github.io/possam-web/.
Abstract:In response to data protection regulations and the ``right to be forgotten'', in this work, we introduce an unlearning algorithm for diffusion models. Our algorithm equips a diffusion model with a mechanism to mitigate the concerns related to data memorization. To achieve this, we formulate the unlearning problem as a bi-level optimization problem, wherein the outer objective is to preserve the utility of the diffusion model on the remaining data. The inner objective aims to scrub the information associated with forgetting data by deviating the learnable generative process from the ground-truth denoising procedure. To solve the resulting bi-level problem, we adopt a first-order method, having superior practical performance while being vigilant about the diffusion process and solving a bi-level problem therein. Empirically, we demonstrate that our algorithm can preserve the model utility, effectiveness, and efficiency while removing across two widely-used diffusion models and in both conditional and unconditional image generation scenarios. In our experiments, we demonstrate the unlearning of classes, attributes, and even a race from face and object datasets such as UTKFace, CelebA, CelebA-HQ, and CIFAR10.
Abstract:The task of Visual Relationship Recognition (VRR) aims to identify relationships between two interacting objects in an image and is particularly challenging due to the widely-spread and highly imbalanced distribution of <subject, relation, object> triplets. To overcome the resultant performance bias in existing VRR approaches, we introduce DiffAugment -- a method which first augments the tail classes in the linguistic space by making use of WordNet and then utilizes the generative prowess of Diffusion Models to expand the visual space for minority classes. We propose a novel hardness-aware component in diffusion which is based upon the hardness of each <S,R,O> triplet and demonstrate the effectiveness of hardness-aware diffusion in generating visual embeddings for the tail classes. We also propose a novel subject and object based seeding strategy for diffusion sampling which improves the discriminative capability of the generated visual embeddings. Extensive experimentation on the GQA-LT dataset shows favorable gains in the subject/object and relation average per-class accuracy using Diffusion augmented samples.
Abstract:The detection and localization of highly realistic deepfake audio-visual content are challenging even for the most advanced state-of-the-art methods. While most of the research efforts in this domain are focused on detecting high-quality deepfake images and videos, only a few works address the problem of the localization of small segments of audio-visual manipulations embedded in real videos. In this research, we emulate the process of such content generation and propose the AV-Deepfake1M dataset. The dataset contains content-driven (i) video manipulations, (ii) audio manipulations, and (iii) audio-visual manipulations for more than 2K subjects resulting in a total of more than 1M videos. The paper provides a thorough description of the proposed data generation pipeline accompanied by a rigorous analysis of the quality of the generated data. The comprehensive benchmark of the proposed dataset utilizing state-of-the-art deepfake detection and localization methods indicates a significant drop in performance compared to previous datasets. The proposed dataset will play a vital role in building the next-generation deepfake localization methods. The dataset and associated code are available at https://github.com/ControlNet/AV-Deepfake1M .
Abstract:In recent years, open-vocabulary (OV) dense visual prediction (such as OV object detection, semantic, instance and panoptic segmentations) has attracted increasing research attention. However, most of existing approaches are task-specific and individually tackle each task. In this paper, we propose a Unified Open-Vocabulary Network (UOVN) to jointly address four common dense prediction tasks. Compared with separate models, a unified network is more desirable for diverse industrial applications. Moreover, OV dense prediction training data is relatively less. Separate networks can only leverage task-relevant training data, while a unified approach can integrate diverse training data to boost individual tasks. We address two major challenges in unified OV prediction. Firstly, unlike unified methods for fixed-set predictions, OV networks are usually trained with multi-modal data. Therefore, we propose a multi-modal, multi-scale and multi-task (MMM) decoding mechanism to better leverage multi-modal data. Secondly, because UOVN uses data from different tasks for training, there are significant domain and task gaps. We present a UOVN training mechanism to reduce such gaps. Experiments on four datasets demonstrate the effectiveness of our UOVN.