Abstract:Recent advancements in Large Multi-modal Models (LMMs) underscore the importance of scaling by increasing image-text paired data, achieving impressive performance on general tasks. Despite their effectiveness in broad applications, generalist models are primarily trained on web-scale datasets dominated by natural images, resulting in the sacrifice of specialized capabilities for domain-specific tasks that require extensive domain prior knowledge. Moreover, directly integrating expert models tailored for specific domains is challenging due to the representational gap and imbalanced optimization between the generalist model and experts. To address these challenges, we introduce Chimera, a scalable and low-cost multi-modal pipeline designed to boost the ability of existing LMMs with domain-specific experts. Specifically, we design a progressive training strategy to integrate features from expert models into the input of a generalist LMM. To address the imbalanced optimization caused by the well-aligned general visual encoder, we introduce a novel Generalist-Specialist Collaboration Masking (GSCM) mechanism. This results in a versatile model that excels across the chart, table, math, and document domains, achieving state-of-the-art performance on multi-modal reasoning and visual content extraction tasks, both of which are challenging tasks for assessing existing LMMs.
Abstract:Large Language Models (LLMs), benefiting from the auto-regressive modelling approach performed on massive unannotated texts corpora, demonstrates powerful perceptual and reasoning capabilities. However, as for extending auto-regressive modelling to multi-modal scenarios to build Large Multi-modal Models (LMMs), there lies a great difficulty that the image information is processed in the LMM as continuous visual embeddings, which cannot obtain discrete supervised labels for classification. In this paper, we successfully perform multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.
Abstract:Multi-modal aspect-based sentiment analysis (MABSA) has recently attracted increasing attention. The span-based extraction methods, such as FSUIE, demonstrate strong performance in sentiment analysis due to their joint modeling of input sequences and target labels. However, previous methods still have certain limitations: (i) They ignore the difference in the focus of visual information between different analysis targets (aspect or sentiment). (ii) Combining features from uni-modal encoders directly may not be sufficient to eliminate the modal gap and can cause difficulties in capturing the image-text pairwise relevance. (iii) Existing span-based methods for MABSA ignore the pairwise relevance of target span boundaries. To tackle these limitations, we propose a novel framework called DQPSA for multi-modal sentiment analysis. Specifically, our model contains a Prompt as Dual Query (PDQ) module that uses the prompt as both a visual query and a language query to extract prompt-aware visual information and strengthen the pairwise relevance between visual information and the analysis target. Additionally, we introduce an Energy-based Pairwise Expert (EPE) module that models the boundaries pairing of the analysis target from the perspective of an Energy-based Model. This expert predicts aspect or sentiment span based on pairwise stability. Experiments on three widely used benchmarks demonstrate that DQPSA outperforms previous approaches and achieves a new state-of-the-art performance.
Abstract:Universal Information Extraction (UIE) has been introduced as a unified framework for various Information Extraction (IE) tasks and has achieved widespread success. Despite this, UIE models have limitations. For example, they rely heavily on span boundaries in the data during training, which does not reflect the reality of span annotation challenges. Slight adjustments to positions can also meet requirements. Additionally, UIE models lack attention to the limited span length feature in IE. To address these deficiencies, we propose the Fuzzy Span Universal Information Extraction (FSUIE) framework. Specifically, our contribution consists of two concepts: fuzzy span loss and fuzzy span attention. Our experimental results on a series of main IE tasks show significant improvement compared to the baseline, especially in terms of fast convergence and strong performance with small amounts of data and training epochs. These results demonstrate the effectiveness and generalization of FSUIE in different tasks, settings, and scenarios.