Abstract:Face image quality assessment (FIQA) algorithms are being integrated into online identity management applications. These applications allow users to upload a face image as part of their document issuance process, where the image is then run through a quality assessment process to make sure it meets the quality and compliance requirements. Concerns about demographic bias have been raised about biometric systems, given the societal implications this may cause. It is therefore important that demographic variability in FIQA algorithms is assessed such that mitigation measures can be created. In this work, we study the demographic variability of all face image quality measures included in the ISO/IEC 29794-5 international standard across three demographic variables: age, gender, and skin tone. The results are rather promising and show no clear bias toward any specific demographic group for most measures. Only two quality measures are found to have considerable variations in their outcomes for different groups on the skin tone variable.
Abstract:Acquiring face images of sufficiently high quality is important for online ID and travel document issuance applications using face recognition systems (FRS). Low-quality, manipulated (intentionally or unintentionally), or distorted images degrade the FRS performance and facilitate documents' misuse. Securing quality for enrolment images, especially in the unsupervised self-enrolment scenario via a smartphone, becomes important to assure FRS performance. In this work, we focus on the less studied area of radial distortion (a.k.a., the fish-eye effect) in face images and its impact on FRS performance. We introduce an effective radial distortion detection model that can detect and flag radial distortion in the enrolment scenario. We formalize the detection model as a face image quality assessment (FIQA) algorithm and provide a careful inspection of the effect of radial distortion on FRS performance. Evaluation results show excellent detection results for the proposed models, and the study on the impact on FRS uncovers valuable insights into how to best use these models in operational systems.
Abstract:A face image is a mandatory part of ID and travel documents. Obtaining high-quality face images when issuing such documents is crucial for both human examiners and automated face recognition systems. In several international standards, face image quality requirements are intricate and defined in detail. Identifying and understanding non-compliance or defects in the submitted face images is crucial for both issuing authorities and applicants. In this work, we introduce FaceOracle, an LLM-powered AI assistant that helps its users analyze a face image in a natural conversational manner using standard compliant algorithms. Leveraging the power of LLMs, users can get explanations of various face image quality concepts as well as interpret the outcome of face image quality assessment (FIQA) algorithms. We implement a proof-of-concept that demonstrates how experts at an issuing authority could integrate FaceOracle into their workflow to analyze, understand, and communicate their decisions more efficiently, resulting in enhanced productivity.
Abstract:Fair operational systems are crucial in gaining and maintaining society's trust in face recognition systems (FRS). FRS start with capturing an image and assessing its quality before using it further for enrollment or verification. Fair Face Image Quality Assessment (FIQA) schemes therefore become equally important in the context of fair FRS. This work examines the sclera as a quality assessment region for obtaining a fair FIQA. The sclera region is agnostic to demographic variations and skin colour for assessing the quality of a face image. We analyze three skin tone related ISO/IEC face image quality assessment measures and assess the sclera region as an alternative area for assessing FIQ. Our analysis of the face dataset of individuals from different demographic groups representing different skin tones indicates sclera as an alternative to measure dynamic range, over- and under-exposure of face using sclera region alone. The sclera region being agnostic to skin tone, i.e., demographic factors, provides equal utility as a fair FIQA as shown by our Error-vs-Discard Characteristic (EDC) curve analysis.
Abstract:The importance of quantifying uncertainty in deep networks has become paramount for reliable real-world applications. In this paper, we propose a method to improve uncertainty estimation in medical Image-to-Image (I2I) translation. Our model integrates aleatoric uncertainty and employs Uncertainty-Aware Regularization (UAR) inspired by simple priors to refine uncertainty estimates and enhance reconstruction quality. We show that by leveraging simple priors on parameters, our approach captures more robust uncertainty maps, effectively refining them to indicate precisely where the network encounters difficulties, while being less affected by noise. Our experiments demonstrate that UAR not only improves translation performance, but also provides better uncertainty estimations, particularly in the presence of noise and artifacts. We validate our approach using two medical imaging datasets, showcasing its effectiveness in maintaining high confidence in familiar regions while accurately identifying areas of uncertainty in novel/ambiguous scenarios.
Abstract:Abnormalities in the gastrointestinal tract significantly influence the patient's health and require a timely diagnosis for effective treatment. With such consideration, an effective automatic classification of these abnormalities from a video capsule endoscopy (VCE) frame is crucial for improvement in diagnostic workflows. The work presents the process of developing and evaluating a novel model designed to classify gastrointestinal anomalies from a VCE video frame. Integration of Omni Dimensional Gated Attention (OGA) mechanism and Wavelet transformation techniques into the model's architecture allowed the model to focus on the most critical areas in the endoscopy images, reducing noise and irrelevant features. This is particularly advantageous in capsule endoscopy, where images often contain a high degree of variability in texture and color. Wavelet transformations contributed by efficiently capturing spatial and frequency-domain information, improving feature extraction, especially for detecting subtle features from the VCE frames. Furthermore, the features extracted from the Stationary Wavelet Transform and Discrete Wavelet Transform are concatenated channel-wise to capture multiscale features, which are essential for detecting polyps, ulcerations, and bleeding. This approach improves classification accuracy on imbalanced capsule endoscopy datasets. The proposed model achieved 92.76% and 91.19% as training and validation accuracies respectively. At the same time, Training and Validation losses are 0.2057 and 0.2700. The proposed model achieved a Balanced Accuracy of 94.81%, AUC of 87.49%, F1-score of 91.11%, precision of 91.17%, recall of 91.19% and specificity of 98.44%. Additionally, the model's performance is benchmarked against two base models, VGG16 and ResNet50, demonstrating its enhanced ability to identify and classify a range of gastrointestinal abnormalities accurately.
Abstract:Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
Abstract:This paper summarises the Competition on Presentation Attack Detection on ID Cards (PAD-IDCard) held at the 2024 International Joint Conference on Biometrics (IJCB2024). The competition attracted a total of ten registered teams, both from academia and industry. In the end, the participating teams submitted five valid submissions, with eight models to be evaluated by the organisers. The competition presented an independent assessment of current state-of-the-art algorithms. Today, no independent evaluation on cross-dataset is available; therefore, this work determined the state-of-the-art on ID cards. To reach this goal, a sequestered test set and baseline algorithms were used to evaluate and compare all the proposals. The sequestered test dataset contains ID cards from four different countries. In summary, a team that chose to be "Anonymous" reached the best average ranking results of 74.80%, followed very closely by the "IDVC" team with 77.65%.
Abstract:Numerous studies have shown that existing Face Recognition Systems (FRS), including commercial ones, often exhibit biases toward certain ethnicities due to under-represented data. In this work, we explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets. We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian. We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another. A systematic analysis is further conducted to assess the suitability of such datasets for FRS by studying the realistic skin-tone representation using Individual Typology Angle (ITA). Further, we also analyze the quality characteristics using existing Face image quality assessment (FIQA) approaches. We then provide a holistic FRS performance analysis using four different systems. Our findings pave the way for future research works in (i) developing both specific ethnicity and general (any to any) ethnicity alteration models, (ii) expanding such approaches to create databases with diverse skin tones, (iii) creating datasets representing various ethnicities which further can help in mitigating bias while addressing privacy concerns.
Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.