Abstract:Face image quality assessment (FIQA) algorithms are being integrated into online identity management applications. These applications allow users to upload a face image as part of their document issuance process, where the image is then run through a quality assessment process to make sure it meets the quality and compliance requirements. Concerns about demographic bias have been raised about biometric systems, given the societal implications this may cause. It is therefore important that demographic variability in FIQA algorithms is assessed such that mitigation measures can be created. In this work, we study the demographic variability of all face image quality measures included in the ISO/IEC 29794-5 international standard across three demographic variables: age, gender, and skin tone. The results are rather promising and show no clear bias toward any specific demographic group for most measures. Only two quality measures are found to have considerable variations in their outcomes for different groups on the skin tone variable.
Abstract:A face image is a mandatory part of ID and travel documents. Obtaining high-quality face images when issuing such documents is crucial for both human examiners and automated face recognition systems. In several international standards, face image quality requirements are intricate and defined in detail. Identifying and understanding non-compliance or defects in the submitted face images is crucial for both issuing authorities and applicants. In this work, we introduce FaceOracle, an LLM-powered AI assistant that helps its users analyze a face image in a natural conversational manner using standard compliant algorithms. Leveraging the power of LLMs, users can get explanations of various face image quality concepts as well as interpret the outcome of face image quality assessment (FIQA) algorithms. We implement a proof-of-concept that demonstrates how experts at an issuing authority could integrate FaceOracle into their workflow to analyze, understand, and communicate their decisions more efficiently, resulting in enhanced productivity.
Abstract:Acquiring face images of sufficiently high quality is important for online ID and travel document issuance applications using face recognition systems (FRS). Low-quality, manipulated (intentionally or unintentionally), or distorted images degrade the FRS performance and facilitate documents' misuse. Securing quality for enrolment images, especially in the unsupervised self-enrolment scenario via a smartphone, becomes important to assure FRS performance. In this work, we focus on the less studied area of radial distortion (a.k.a., the fish-eye effect) in face images and its impact on FRS performance. We introduce an effective radial distortion detection model that can detect and flag radial distortion in the enrolment scenario. We formalize the detection model as a face image quality assessment (FIQA) algorithm and provide a careful inspection of the effect of radial distortion on FRS performance. Evaluation results show excellent detection results for the proposed models, and the study on the impact on FRS uncovers valuable insights into how to best use these models in operational systems.
Abstract:Fair operational systems are crucial in gaining and maintaining society's trust in face recognition systems (FRS). FRS start with capturing an image and assessing its quality before using it further for enrollment or verification. Fair Face Image Quality Assessment (FIQA) schemes therefore become equally important in the context of fair FRS. This work examines the sclera as a quality assessment region for obtaining a fair FIQA. The sclera region is agnostic to demographic variations and skin colour for assessing the quality of a face image. We analyze three skin tone related ISO/IEC face image quality assessment measures and assess the sclera region as an alternative area for assessing FIQ. Our analysis of the face dataset of individuals from different demographic groups representing different skin tones indicates sclera as an alternative to measure dynamic range, over- and under-exposure of face using sclera region alone. The sclera region being agnostic to skin tone, i.e., demographic factors, provides equal utility as a fair FIQA as shown by our Error-vs-Discard Characteristic (EDC) curve analysis.
Abstract:Face image quality assessment (FIQA) is crucial for obtaining good face recognition performance. FIQA algorithms should be robust and insensitive to demographic factors. The eye sclera has a consistent whitish color in all humans regardless of their age, ethnicity and skin-tone. This work proposes a robust sclera segmentation method that is suitable for face images in the enrolment and the border control face recognition scenarios. It shows how the statistical analysis of the sclera pixels produces features that are invariant to skin-tone, age and ethnicity and thus can be incorporated into FIQA algorithms to make them agnostic to demographic factors.
Abstract:Generative Adversarial Networks (GANs) have witnessed significant advances in recent years, generating increasingly higher quality images, which are non-distinguishable from real ones. Recent GANs have proven to encode features in a disentangled latent space, enabling precise control over various semantic attributes of the generated facial images such as pose, illumination, or gender. GAN inversion, which is projecting images into the latent space of a GAN, opens the door for the manipulation of facial semantics of real face images. This is useful for numerous applications such as evaluating the performance of face recognition systems. In this work, EGAIN, an architecture for constructing GAN inversion models, is presented. This architecture explicitly addresses some of the shortcomings in previous GAN inversion models. A specific model with the same name, egain, based on this architecture is also proposed, demonstrating superior reconstruction quality over state-of-the-art models, and illustrating the validity of the EGAIN architecture.