Abstract:Iris recognition technology plays a critical role in biometric identification systems, but their performance can be affected by variations in iris pigmentation. In this work, we investigate the impact of iris pigmentation on the efficacy of biometric recognition systems, focusing on a comparative analysis of blue and dark irises. Data sets were collected using multiple devices, including P1, P2, and P3 smartphones [4], to assess the robustness of the systems in different capture environments [19]. Both traditional machine learning techniques and deep learning models were used, namely Open-Iris, ViT-b, and ResNet50, to evaluate performance metrics such as Equal Error Rate (EER) and True Match Rate (TMR). Our results indicate that iris recognition systems generally exhibit higher accuracy for blue irises compared to dark irises. Furthermore, we examined the generalization capabilities of these systems across different iris colors and devices, finding that while training on diverse datasets enhances recognition performance, the degree of improvement is contingent on the specific model and device used. Our analysis also identifies inherent biases in recognition performance related to iris color and cross-device variability. These findings underscore the need for more inclusive dataset collection and model refinement to reduce bias and promote equitable biometric recognition across varying iris pigmentation and device configurations.
Abstract:Face recognition systems (FRS) can be compromised by face morphing attacks, which blend textural and geometric information from multiple facial images. The rapid evolution of generative AI, especially Generative Adversarial Networks (GAN) or Diffusion models, where encoded images are interpolated to generate high-quality face morphing images. In this work, we present a novel method for the automatic face morphing generation method \textit{MorCode}, which leverages a contemporary encoder-decoder architecture conditioned on codebook learning to generate high-quality morphing images. Extensive experiments were performed on the newly constructed morphing dataset using five state-of-the-art morphing generation techniques using both digital and print-scan data. The attack potential of the proposed morphing generation technique, \textit{MorCode}, was benchmarked using three different face recognition systems. The obtained results indicate the highest attack potential of the proposed \textit{MorCode} when compared with five state-of-the-art morphing generation methods on both digital and print scan data.
Abstract:Deepfakes pose a critical threat to biometric authentication systems by generating highly realistic synthetic media. Existing multimodal deepfake detectors often struggle to adapt to diverse data and rely on simple fusion methods. To address these challenges, we propose Gumbel-Rao Monte Carlo Bi-modal Neural Architecture Search (GRMC-BMNAS), a novel architecture search framework that employs Gumbel-Rao Monte Carlo sampling to optimize multimodal fusion. It refines the Straight through Gumbel Softmax (STGS) method by reducing variance with Rao-Blackwellization, stabilizing network training. Using a two-level search approach, the framework optimizes the network architecture, parameters, and performance. Crucial features are efficiently identified from backbone networks, while within the cell structure, a weighted fusion operation integrates information from various sources. By varying parameters such as temperature and number of Monte carlo samples yields an architecture that maximizes classification performance and better generalisation capability. Experimental results on the FakeAVCeleb and SWAN-DF datasets demonstrate an impressive AUC percentage of 95.4\%, achieved with minimal model parameters.
Abstract:Smartphone-based contactless fingerphoto authentication has become a reliable alternative to traditional contact-based fingerprint biometric systems owing to rapid advances in smartphone camera technology. Despite its convenience, fingerprint authentication through fingerphotos is more vulnerable to presentation attacks, which has motivated recent research efforts towards developing fingerphoto Presentation Attack Detection (PAD) techniques. However, prior PAD approaches utilized supervised learning methods that require labeled training data for both bona fide and attack samples. This can suffer from two key issues, namely (i) generalization:the detection of novel presentation attack instruments (PAIs) unseen in the training data, and (ii) scalability:the collection of a large dataset of attack samples using different PAIs. To address these challenges, we propose a novel unsupervised approach based on a state-of-the-art deep-learning-based diffusion model, the Denoising Diffusion Probabilistic Model (DDPM), which is trained solely on bona fide samples. The proposed approach detects Presentation Attacks (PA) by calculating the reconstruction similarity between the input and output pairs of the DDPM. We present extensive experiments across three PAI datasets to test the accuracy and generalization capability of our approach. The results show that the proposed DDPM-based PAD method achieves significantly better detection error rates on several PAI classes compared to other baseline unsupervised approaches.
Abstract:Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
Abstract:This paper summarises the Competition on Presentation Attack Detection on ID Cards (PAD-IDCard) held at the 2024 International Joint Conference on Biometrics (IJCB2024). The competition attracted a total of ten registered teams, both from academia and industry. In the end, the participating teams submitted five valid submissions, with eight models to be evaluated by the organisers. The competition presented an independent assessment of current state-of-the-art algorithms. Today, no independent evaluation on cross-dataset is available; therefore, this work determined the state-of-the-art on ID cards. To reach this goal, a sequestered test set and baseline algorithms were used to evaluate and compare all the proposals. The sequestered test dataset contains ID cards from four different countries. In summary, a team that chose to be "Anonymous" reached the best average ranking results of 74.80%, followed very closely by the "IDVC" team with 77.65%.
Abstract:Recent studies have emphasized the potential of forehead-crease patterns as an alternative for face, iris, and periocular recognition, presenting contactless and convenient solutions, particularly in situations where faces are covered by surgical masks. However, collecting forehead data presents challenges, including cost and time constraints, as developing and optimizing forehead verification methods requires a substantial number of high-quality images. To tackle these challenges, the generation of synthetic biometric data has gained traction due to its ability to protect privacy while enabling effective training of deep learning-based biometric verification methods. In this paper, we present a new framework to synthesize forehead-crease image data while maintaining important features, such as uniqueness and realism. The proposed framework consists of two main modules: a Subject-Specific Generation Module (SSGM), based on an image-to-image Brownian Bridge Diffusion Model (BBDM), which learns a one-to-many mapping between image pairs to generate identity-aware synthetic forehead creases corresponding to real subjects, and a Subject-Agnostic Generation Module (SAGM), which samples new synthetic identities with assistance from the SSGM. We evaluate the diversity and realism of the generated forehead-crease images primarily using the Fr\'echet Inception Distance (FID) and the Structural Similarity Index Measure (SSIM). In addition, we assess the utility of synthetically generated forehead-crease images using a forehead-crease verification system (FHCVS). The results indicate an improvement in the verification accuracy of the FHCVS by utilizing synthetic data.
Abstract:Multilingual speaker verification introduces the challenge of verifying a speaker in multiple languages. Existing systems were built using i-vector/x-vector approaches along with Bi-LSTMs, which were trained to discriminate speakers, irrespective of the language. Instead of exploring the design space manually, we propose a neural architecture search for multilingual speaker verification suitable for mobile devices, called \textbf{NeuralMultiling}. First, our algorithm searches for an optimal operational combination of neural cells with different architectures for normal cells and reduction cells and then derives a CNN model by stacking neural cells. Using the derived architecture, we performed two different studies:1) language agnostic condition and 2) interoperability between languages and devices on the publicly available Multilingual Audio-Visual Smartphone (MAVS) dataset. The experimental results suggest that the derived architecture significantly outperforms the existing Autospeech method by a 5-6\% reduction in the Equal Error Rate (EER) with fewer model parameters.
Abstract:Deepfakes are a major security risk for biometric authentication. This technology creates realistic fake videos that can impersonate real people, fooling systems that rely on facial features and voice patterns for identification. Existing multimodal deepfake detectors rely on conventional fusion methods, such as majority rule and ensemble voting, which often struggle to adapt to changing data characteristics and complex patterns. In this paper, we introduce the Straight-through Gumbel-Softmax (STGS) framework, offering a comprehensive approach to search multimodal fusion model architectures. Using a two-level search approach, the framework optimizes the network architecture, parameters, and performance. Initially, crucial features were efficiently identified from backbone networks, whereas within the cell structure, a weighted fusion operation integrated information from various sources. An architecture that maximizes the classification performance is derived by varying parameters such as temperature and sampling time. The experimental results on the FakeAVCeleb and SWAN-DF datasets demonstrated an impressive AUC value 94.4\% achieved with minimal model parameters.
Abstract:Numerous studies have shown that existing Face Recognition Systems (FRS), including commercial ones, often exhibit biases toward certain ethnicities due to under-represented data. In this work, we explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets. We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian. We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another. A systematic analysis is further conducted to assess the suitability of such datasets for FRS by studying the realistic skin-tone representation using Individual Typology Angle (ITA). Further, we also analyze the quality characteristics using existing Face image quality assessment (FIQA) approaches. We then provide a holistic FRS performance analysis using four different systems. Our findings pave the way for future research works in (i) developing both specific ethnicity and general (any to any) ethnicity alteration models, (ii) expanding such approaches to create databases with diverse skin tones, (iii) creating datasets representing various ethnicities which further can help in mitigating bias while addressing privacy concerns.