Abstract:Face recognition systems (FRS) can be compromised by face morphing attacks, which blend textural and geometric information from multiple facial images. The rapid evolution of generative AI, especially Generative Adversarial Networks (GAN) or Diffusion models, where encoded images are interpolated to generate high-quality face morphing images. In this work, we present a novel method for the automatic face morphing generation method \textit{MorCode}, which leverages a contemporary encoder-decoder architecture conditioned on codebook learning to generate high-quality morphing images. Extensive experiments were performed on the newly constructed morphing dataset using five state-of-the-art morphing generation techniques using both digital and print-scan data. The attack potential of the proposed morphing generation technique, \textit{MorCode}, was benchmarked using three different face recognition systems. The obtained results indicate the highest attack potential of the proposed \textit{MorCode} when compared with five state-of-the-art morphing generation methods on both digital and print scan data.
Abstract:Facial biometrics are an essential components of smartphones to ensure reliable and trustworthy authentication. However, face biometric systems are vulnerable to Presentation Attacks (PAs), and the availability of more sophisticated presentation attack instruments such as 3D silicone face masks will allow attackers to deceive face recognition systems easily. In this work, we propose a novel Presentation Attack Detection (PAD) algorithm based on 3D point clouds captured using the frontal camera of a smartphone to detect presentation attacks. The proposed PAD algorithm, VoxAtnNet, processes 3D point clouds to obtain voxelization to preserve the spatial structure. Then, the voxelized 3D samples were trained using the novel convolutional attention network to detect PAs on the smartphone. Extensive experiments were carried out on the newly constructed 3D face point cloud dataset comprising bona fide and two different 3D PAIs (3D silicone face mask and wrap photo mask), resulting in 3480 samples. The performance of the proposed method was compared with existing methods to benchmark the detection performance using three different evaluation protocols. The experimental results demonstrate the improved performance of the proposed method in detecting both known and unknown face presentation attacks.
Abstract:Presentation Attack Detection (PAD) has been extensively studied, particularly in the visible spectrum. With the advancement of sensing technology beyond the visible range, multispectral imaging has gained significant attention in this direction. We present PAD based on multispectral images constructed for eight different presentation artifacts resulted from three different artifact species. In this work, we introduce Face Presentation Attack Multispectral (FPAMS) database to demonstrate the significance of employing multispectral imaging. The goal of this work is to study complementary information that can be combined in two different ways (image fusion and score fusion) from multispectral imaging to improve the face PAD. The experimental evaluation results present an extensive qualitative analysis of 61650 sample multispectral images collected for bonafide and artifacts. The PAD based on the score fusion and image fusion method presents superior performance, demonstrating the significance of employing multispectral imaging to detect presentation artifacts.
Abstract:Biometric verification systems are deployed in various security-based access-control applications that require user-friendly and reliable person verification. Among the different biometric characteristics, fingervein biometrics have been extensively studied owing to their reliable verification performance. Furthermore, fingervein patterns reside inside the skin and are not visible outside; therefore, they possess inherent resistance to presentation attacks and degradation due to external factors. In this paper, we introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet. The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images. The proposed VeinAtnNet was trained on the newly constructed fingervein dataset with 300 unique fingervein patterns that were captured in multiple sessions to obtain 92 samples per unique fingervein. Extensive experiments were performed on the newly collected dataset FV-300 and the publicly available FV-USM and FV-PolyU fingervein dataset. The performance of the proposed method was compared with five state-of-the-art fingervein verification systems, indicating the efficacy of the proposed VeinAtnNet.
Abstract:Facial biometrics are widely deployed in smartphone-based applications because of their usability and increased verification accuracy in unconstrained scenarios. The evolving applications of smartphone-based facial recognition have also increased Presentation Attacks (PAs), where an attacker can present a Presentation Attack Instrument (PAI) to maliciously gain access to the application. Because the materials used to generate PAI are not deterministic, the detection of unknown presentation attacks is challenging. In this paper, we present an acoustic echo-based face Presentation Attack Detection (PAD) on a smartphone in which the PAs are detected based on the reflection profiles of the transmitted signal. We propose a novel transmission signal based on the wide pulse that allows us to model the background noise before transmitting the signal and increase the Signal-to-Noise Ratio (SNR). The received signal reflections were processed to remove background noise and accurately represent reflection characteristics. The reflection profiles of the bona fide and PAs are different owing to the different reflection characteristics of the human skin and artefact materials. Extensive experiments are presented using the newly collected Acoustic Sound Echo Dataset (ASED) with 4807 samples captured from bona fide and four different types of PAIs, including print (two types), display, and silicone face-mask attacks. The obtained results indicate the robustness of the proposed method for detecting unknown face presentation attacks.
Abstract:Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 $\times$ 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.
Abstract:Face morphing attack detection is emerging as an increasingly challenging problem owing to advancements in high-quality and realistic morphing attack generation. Reliable detection of morphing attacks is essential because these attacks are targeted for border control applications. This paper presents a multispectral framework for differential morphing-attack detection (D-MAD). The D-MAD methods are based on using two facial images that are captured from the ePassport (also called the reference image) and the trusted device (for example, Automatic Border Control (ABC) gates) to detect whether the face image presented in ePassport is morphed. The proposed multispectral D-MAD framework introduce a multispectral image captured as a trusted capture to capture seven different spectral bands to detect morphing attacks. Extensive experiments were conducted on the newly created datasets with 143 unique data subjects that were captured using both visible and multispectral cameras in multiple sessions. The results indicate the superior performance of the proposed multispectral framework compared to visible images.
Abstract:Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.
Abstract:While several works have studied the vulnerability of automated FRS and have proposed morphing attack detection (MAD) methods, very few have focused on studying the human ability to detect morphing attacks. The examiner/observer's face morph detection ability is based on their observation, domain knowledge, experience, and familiarity with the problem, and no works report the detailed findings from observers who check identity documents as a part of their everyday professional life. This work creates a new benchmark database of realistic morphing attacks from 48 unique subjects leading to 400 morphed images presented to the observers in a Differential-MAD (D-MAD) setting. Unlike the existing databases, the newly created morphed image database has been created with careful considerations to age, gender and ethnicity to create realistic morph attacks. Further, unlike the previous works, we also capture ten images from Automated Border Control (ABC) gates to mimic the realistic D-MAD setting leading to 400 probe images in border crossing scenarios. The newly created dataset is further used to study the ability of human observers' ability to detect morphed images. In addition, a new dataset of 180 morphed images is also created using the FRGCv2 dataset under the Single Image-MAD (S-MAD) setting. Further, to benchmark the human ability in detecting morphs, a new evaluation platform is created to conduct S-MAD and D-MAD analysis. The benchmark study employs 469 observers for D-MAD and 410 observers for S-MAD who are primarily governmental employees from more than 40 countries. The analysis provides interesting insights and points to expert observers' missing competence and failure to detect a considerable amount of morphing attacks. Human observers tend to detect morphed images to a lower accuracy as compared to the automated MAD algorithms evaluated in this work.
Abstract:Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on all possible attack types is essential to achieve good detection performance. Therefore, investigating new methods of creating morphing attacks drives the generalizability of MADs. Creating morphing attacks was performed on the image level, by landmark interpolation, or on the latent-space level, by manipulating latent vectors in a generative adversarial network. The earlier results in varying blending artifacts and the latter results in synthetic-like striping artifacts. This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation, as well as, eliminate the manipulation in the latent space, resulting in visibly realistic morphed images compared to previous works. The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability, whether as known or unknown attacks.