Abstract:Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems. capitalizing on the great capabilities of LLMs for code-related activities, several frameworks leveraging logical solvers for logic reasoning have been proposed recently. While existing research predominantly focuses on viewing LLMs as natural language logic solvers or translators, their roles as logic code interpreters and executors have received limited attention. This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs. To further investigate this novel task, we formulate our three research questions: Can LLMs efficiently simulate the outputs of logic codes? What strength arises along with logic code simulation? And what pitfalls? To address these inquiries, we curate three novel datasets tailored for the logic code simulation task and undertake thorough experiments to establish the baseline performance of LLMs in code simulation. Subsequently, we introduce a pioneering LLM-based code simulation technique, Dual Chains of Logic (DCoL). This technique advocates a dual-path thinking approach for LLMs, which has demonstrated state-of-the-art performance compared to other LLM prompt strategies, achieving a notable improvement in accuracy by 7.06% with GPT-4-Turbo.
Abstract:ZKP systems have surged attention and held a fundamental role in contemporary cryptography. Zk-SNARK protocols dominate the ZKP usage, often implemented through arithmetic circuit programming paradigm. However, underconstrained or overconstrained circuits may lead to bugs. Underconstrained circuits refer to circuits that lack the necessary constraints, resulting in unexpected solutions in the circuit and causing the verifier to accept a bogus witness. Overconstrained circuits refer to circuits that are constrained excessively, resulting in the circuit lacking necessary solutions and causing the verifier to accept no witness, rendering the circuit meaningless. This paper introduces a novel approach for pinpointing two distinct types of bugs in ZKP circuits. The method involves encoding the arithmetic circuit constraints to polynomial equation systems and solving polynomial equation systems over a finite field by algebraic computation. The classification of verification results is refined, greatly enhancing the expressive power of the system. We proposed a tool, AC4, to represent the implementation of this method. Experiments demonstrate that AC4 represents a substantial 29% increase in the checked ratio compared to prior work. Within a solvable range, the checking time of AC4 has also exhibited noticeable improvement, demonstrating a magnitude increase compared to previous efforts.
Abstract:The accuracy and robustness of vehicle localization are critical for achieving safe and reliable high-level autonomy. Recent results show that GPS is vulnerable to spoofing attacks, which is one major threat to autonomous driving. In this paper, a novel anomaly detection and mitigation method against GPS attacks that utilizes onboard camera and high-precision maps is proposed to ensure accurate vehicle localization. First, lateral direction localization in driving lanes is calculated by camera-based lane detection and map matching respectively. Then, a real-time detector for GPS spoofing attack is developed to evaluate the localization data. When the attack is detected, a multi-source fusion-based localization method using Unscented Kalman filter is derived to mitigate GPS attack and improve the localization accuracy. The proposed method is validated in various scenarios in Carla simulator and open-source public dataset to demonstrate its effectiveness in timely GPS attack detection and data recovery.
Abstract:Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 $\times$ 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.
Abstract:Face morphing attacks have emerged as a potential threat, particularly in automatic border control scenarios. Morphing attacks permit more than one individual to use travel documents that can be used to cross borders using automatic border control gates. The potential for morphing attacks depends on the selection of data subjects (accomplice and malicious actors). This work investigates lookalike and identical twins as the source of face morphing generation. We present a systematic study on benchmarking the vulnerability of Face Recognition Systems (FRS) to lookalike and identical twin morphing images. Therefore, we constructed new face morphing datasets using 16 pairs of identical twin and lookalike data subjects. Morphing images from lookalike and identical twins are generated using a landmark-based method. Extensive experiments are carried out to benchmark the attack potential of lookalike and identical twins. Furthermore, experiments are designed to provide insights into the impact of vulnerability with normal face morphing compared with lookalike and identical twin face morphing.
Abstract:To date, machine learning for human action recognition in video has been widely implemented in sports activities. Although some studies have been successful in the past, precision is still the most significant concern. In this study, we present a high-accuracy framework to automatically clip the sports video stream by using a three-level prediction algorithm based on two classical open-source structures, i.e., YOLO-v3 and OpenPose. It is found that by using a modest amount of sports video training data, our methodology can perform sports activity highlights clipping accurately. Comparing with the previous systems, our methodology shows some advantages in accuracy. This study may serve as a new clipping system to extend the potential applications of the video summarization in sports field, as well as facilitates the development of match analysis system.
Abstract:Detecting Graphical User Interface (GUI) elements in GUI images is a domain-specific object detection task. It supports many software engineering tasks, such as GUI animation and testing, GUI search and code generation. Existing studies for GUI element detection directly borrow the mature methods from computer vision (CV) domain, including old fashioned ones that rely on traditional image processing features (e.g., canny edge, contours), and deep learning models that learn to detect from large-scale GUI data. Unfortunately, these CV methods are not originally designed with the awareness of the unique characteristics of GUIs and GUI elements and the high localization accuracy of the GUI element detection task. We conduct the first large-scale empirical study of seven representative GUI element detection methods on over 50k GUI images to understand the capabilities, limitations and effective designs of these methods. This study not only sheds the light on the technical challenges to be addressed but also informs the design of new GUI element detection methods. We accordingly design a new GUI-specific old-fashioned method for non-text GUI element detection which adopts a novel top-down coarse-to-fine strategy, and incorporate it with the mature deep learning model for GUI text detection.Our evaluation on 25,000 GUI images shows that our method significantly advances the start-of-the-art performance in GUI element detection.
Abstract:Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues that are not addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the subjects, and further post-processed to remove the morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research.
Abstract:Fingerprint recognition systems are widely deployed in various real-life applications as they have achieved high accuracy. The widely used applications include border control, automated teller machine (ATM), and attendance monitoring systems. However, these critical systems are prone to spoofing attacks (a.k.a presentation attacks (PA)). PA for fingerprint can be performed by presenting gummy fingers made from different materials such as silicone, gelatine, play-doh, ecoflex, 2D printed paper, 3D printed material, or latex. Biometrics Researchers have developed Presentation Attack Detection (PAD) methods as a countermeasure to PA. PAD is usually done by training a machine learning classifier for known attacks for a given dataset, and they achieve high accuracy in this task. However, generalizing to unknown attacks is an essential problem from applicability to real-world systems, mainly because attacks cannot be exhaustively listed in advance. In this survey paper, we present a comprehensive survey on existing PAD algorithms for fingerprint recognition systems, specifically from the standpoint of detecting unknown PAD. We categorize PAD algorithms, point out their advantages/disadvantages, and future directions for this area.
Abstract:According to the World Health Organization(WHO), it is estimated that approximately 1.3 billion people live with some forms of vision impairment globally, of whom 36 million are blind. Due to their disability, engaging these minority into the society is a challenging problem. The recent rise of smart mobile phones provides a new solution by enabling blind users' convenient access to the information and service for understanding the world. Users with vision impairment can adopt the screen reader embedded in the mobile operating systems to read the content of each screen within the app, and use gestures to interact with the phone. However, the prerequisite of using screen readers is that developers have to add natural-language labels to the image-based components when they are developing the app. Unfortunately, more than 77% apps have issues of missing labels, according to our analysis of 10,408 Android apps. Most of these issues are caused by developers' lack of awareness and knowledge in considering the minority. And even if developers want to add the labels to UI components, they may not come up with concise and clear description as most of them are of no visual issues. To overcome these challenges, we develop a deep-learning based model, called LabelDroid, to automatically predict the labels of image-based buttons by learning from large-scale commercial apps in Google Play. The experimental results show that our model can make accurate predictions and the generated labels are of higher quality than that from real Android developers.