Abstract:Facial biometrics are an essential components of smartphones to ensure reliable and trustworthy authentication. However, face biometric systems are vulnerable to Presentation Attacks (PAs), and the availability of more sophisticated presentation attack instruments such as 3D silicone face masks will allow attackers to deceive face recognition systems easily. In this work, we propose a novel Presentation Attack Detection (PAD) algorithm based on 3D point clouds captured using the frontal camera of a smartphone to detect presentation attacks. The proposed PAD algorithm, VoxAtnNet, processes 3D point clouds to obtain voxelization to preserve the spatial structure. Then, the voxelized 3D samples were trained using the novel convolutional attention network to detect PAs on the smartphone. Extensive experiments were carried out on the newly constructed 3D face point cloud dataset comprising bona fide and two different 3D PAIs (3D silicone face mask and wrap photo mask), resulting in 3480 samples. The performance of the proposed method was compared with existing methods to benchmark the detection performance using three different evaluation protocols. The experimental results demonstrate the improved performance of the proposed method in detecting both known and unknown face presentation attacks.
Abstract:Presentation Attack Detection (PAD) has been extensively studied, particularly in the visible spectrum. With the advancement of sensing technology beyond the visible range, multispectral imaging has gained significant attention in this direction. We present PAD based on multispectral images constructed for eight different presentation artifacts resulted from three different artifact species. In this work, we introduce Face Presentation Attack Multispectral (FPAMS) database to demonstrate the significance of employing multispectral imaging. The goal of this work is to study complementary information that can be combined in two different ways (image fusion and score fusion) from multispectral imaging to improve the face PAD. The experimental evaluation results present an extensive qualitative analysis of 61650 sample multispectral images collected for bonafide and artifacts. The PAD based on the score fusion and image fusion method presents superior performance, demonstrating the significance of employing multispectral imaging to detect presentation artifacts.