While several works have studied the vulnerability of automated FRS and have proposed morphing attack detection (MAD) methods, very few have focused on studying the human ability to detect morphing attacks. The examiner/observer's face morph detection ability is based on their observation, domain knowledge, experience, and familiarity with the problem, and no works report the detailed findings from observers who check identity documents as a part of their everyday professional life. This work creates a new benchmark database of realistic morphing attacks from 48 unique subjects leading to 400 morphed images presented to the observers in a Differential-MAD (D-MAD) setting. Unlike the existing databases, the newly created morphed image database has been created with careful considerations to age, gender and ethnicity to create realistic morph attacks. Further, unlike the previous works, we also capture ten images from Automated Border Control (ABC) gates to mimic the realistic D-MAD setting leading to 400 probe images in border crossing scenarios. The newly created dataset is further used to study the ability of human observers' ability to detect morphed images. In addition, a new dataset of 180 morphed images is also created using the FRGCv2 dataset under the Single Image-MAD (S-MAD) setting. Further, to benchmark the human ability in detecting morphs, a new evaluation platform is created to conduct S-MAD and D-MAD analysis. The benchmark study employs 469 observers for D-MAD and 410 observers for S-MAD who are primarily governmental employees from more than 40 countries. The analysis provides interesting insights and points to expert observers' missing competence and failure to detect a considerable amount of morphing attacks. Human observers tend to detect morphed images to a lower accuracy as compared to the automated MAD algorithms evaluated in this work.