Abstract:This paper proposes a Few-shot Learning (FSL) approach for detecting Presentation Attacks on ID Cards deployed in a remote verification system and its extension to new countries. Our research analyses the performance of Prototypical Networks across documents from Spain and Chile as a baseline and measures the extension of generalisation capabilities of new ID Card countries such as Argentina and Costa Rica. Specifically targeting the challenge of screen display presentation attacks. By leveraging convolutional architectures and meta-learning principles embodied in Prototypical Networks, we have crafted a model that demonstrates high efficacy with Few-shot examples. This research reveals that competitive performance can be achieved with as Few-shots as five unique identities and with under 100 images per new country added. This opens a new insight for novel generalised Presentation Attack Detection on ID cards to unknown attacks.
Abstract:This paper summarises the Competition on Presentation Attack Detection on ID Cards (PAD-IDCard) held at the 2024 International Joint Conference on Biometrics (IJCB2024). The competition attracted a total of ten registered teams, both from academia and industry. In the end, the participating teams submitted five valid submissions, with eight models to be evaluated by the organisers. The competition presented an independent assessment of current state-of-the-art algorithms. Today, no independent evaluation on cross-dataset is available; therefore, this work determined the state-of-the-art on ID cards. To reach this goal, a sequestered test set and baseline algorithms were used to evaluate and compare all the proposals. The sequestered test dataset contains ID cards from four different countries. In summary, a team that chose to be "Anonymous" reached the best average ranking results of 74.80%, followed very closely by the "IDVC" team with 77.65%.