Abstract:Despite graph neural networks' (GNNs) great success in modelling graph-structured data, out-of-distribution (OOD) test instances still pose a great challenge for current GNNs. One of the most effective techniques to detect OOD nodes is to expose the detector model with an additional OOD node-set, yet the extra OOD instances are often difficult to obtain in practice. Recent methods for image data address this problem using OOD data synthesis, typically relying on pre-trained generative models like Stable Diffusion. However, these approaches require vast amounts of additional data, as well as one-for-all pre-trained generative models, which are not available for graph data. Therefore, we propose the GOLD framework for graph OOD detection, an implicit adversarial learning pipeline with synthetic OOD exposure without pre-trained models. The implicit adversarial training process employs a novel alternating optimisation framework by training: (1) a latent generative model to regularly imitate the in-distribution (ID) embeddings from an evolving GNN, and (2) a GNN encoder and an OOD detector to accurately classify ID data while increasing the energy divergence between the ID embeddings and the generative model's synthetic embeddings. This novel approach implicitly transforms the synthetic embeddings into pseudo-OOD instances relative to the ID data, effectively simulating exposure to OOD scenarios without auxiliary data. Extensive OOD detection experiments are conducted on five benchmark graph datasets, verifying the superior performance of GOLD without using real OOD data compared with the state-of-the-art OOD exposure and non-exposure baselines.
Abstract:This paper presents an approach for surgical phase recognition using video data, aiming to provide a comprehensive understanding of surgical procedures for automated workflow analysis. The advent of robotic surgery, digitized operating rooms, and the generation of vast amounts of data have opened doors for the application of machine learning and computer vision in the analysis of surgical videos. Among these advancements, Surgical Phase Recognition(SPR) stands out as an emerging technology that has the potential to recognize and assess the ongoing surgical scenario, summarize the surgery, evaluate surgical skills, offer surgical decision support, and facilitate medical training. In this paper, we analyse and evaluate both frame-based and video clipping-based phase recognition on thoracic surgery dataset consisting of 11 classes of phases. Specifically, we utilize ImageNet ViT for image-based classification and VideoMAE as the baseline model for video-based classification. We show that Masked Video Distillation(MVD) exhibits superior performance, achieving a top-1 accuracy of 72.9%, compared to 52.31% achieved by ImageNet ViT. These findings underscore the efficacy of video-based classifiers over their image-based counterparts in surgical phase recognition tasks.
Abstract:To counter the side effect brought by the proliferation of social media platforms, hate speech detection (HSD) plays a vital role in halting the dissemination of toxic online posts at an early stage. However, given the ubiquitous topical communities on social media, a trained HSD classifier easily becomes biased towards specific targeted groups (e.g., female and black people), where a high rate of false positive/negative results can significantly impair public trust in the fairness of content moderation mechanisms, and eventually harm the diversity of online society. Although existing fairness-aware HSD methods can smooth out some discrepancies across targeted groups, they are mostly specific to a narrow selection of targets that are assumed to be known and fixed. This inevitably prevents those methods from generalizing to real-world use cases where new targeted groups constantly emerge over time. To tackle this defect, we propose Generalizable target-aware Fairness (GetFair), a new method for fairly classifying each post that contains diverse and even unseen targets during inference. To remove the HSD classifier's spurious dependence on target-related features, GetFair trains a series of filter functions in an adversarial pipeline, so as to deceive the discriminator that recovers the targeted group from filtered post embeddings. To maintain scalability and generalizability, we innovatively parameterize all filter functions via a hypernetwork that is regularized by the semantic affinity among targets. Taking a target's pretrained word embedding as input, the hypernetwork generates the weights used by each target-specific filter on-the-fly without storing dedicated filter parameters. Finally, comparative experiments on two HSD datasets have shown advantageous performance of GetFair on out-of-sample targets.