Abstract:Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) images capture high-resolution views of the retina with typically 200 spanning degrees. Accurate segmentation of vessels in UWF-SLO images is essential for detecting and diagnosing fundus disease. Recent studies have revealed that the selective State Space Model (SSM) in Mamba performs well in modeling long-range dependencies, which is crucial for capturing the continuity of elongated vessel structures. Inspired by this, we propose the first Serpentine Mamba (Serp-Mamba) network to address this challenging task. Specifically, we recognize the intricate, varied, and delicate nature of the tubular structure of vessels. Furthermore, the high-resolution of UWF-SLO images exacerbates the imbalance between the vessel and background categories. Based on the above observations, we first devise a Serpentine Interwoven Adaptive (SIA) scan mechanism, which scans UWF-SLO images along curved vessel structures in a snake-like crawling manner. This approach, consistent with vascular texture transformations, ensures the effective and continuous capture of curved vascular structure features. Second, we propose an Ambiguity-Driven Dual Recalibration (ADDR) module to address the category imbalance problem intensified by high-resolution images. Our ADDR module delineates pixels by two learnable thresholds and refines ambiguous pixels through a dual-driven strategy, thereby accurately distinguishing vessels and background regions. Experiment results on three datasets demonstrate the superior performance of our Serp-Mamba on high-resolution vessel segmentation. We also conduct a series of ablation studies to verify the impact of our designs. Our code shall be released upon publication of this work.
Abstract:Traditional shadow detectors often identify all shadow regions of static images or video sequences. This work presents the Referring Video Shadow Detection (RVSD), which is an innovative task that rejuvenates the classic paradigm by facilitating the segmentation of particular shadows in videos based on descriptive natural language prompts. This novel RVSD not only achieves segmentation of arbitrary shadow areas of interest based on descriptions (flexibility) but also allows users to interact with visual content more directly and naturally by using natural language prompts (interactivity), paving the way for abundant applications ranging from advanced video editing to virtual reality experiences. To pioneer the RVSD research, we curated a well-annotated RVSD dataset, which encompasses 86 videos and a rich set of 15,011 paired textual descriptions with corresponding shadows. To the best of our knowledge, this dataset is the first one for addressing RVSD. Based on this dataset, we propose a Referring Shadow-Track Memory Network (RSM-Net) for addressing the RVSD task. In our RSM-Net, we devise a Twin-Track Synergistic Memory (TSM) to store intra-clip memory features and hierarchical inter-clip memory features, and then pass these memory features into a memory read module to refine features of the current video frame for referring shadow detection. We also develop a Mixed-Prior Shadow Attention (MSA) to utilize physical priors to obtain a coarse shadow map for learning more visual features by weighting it with the input video frame. Experimental results show that our RSM-Net achieves state-of-the-art performance for RVSD with a notable Overall IOU increase of 4.4\%. Our code and dataset are available at https://github.com/whq-xxh/RVSD.
Abstract:The outdoor vision systems are frequently contaminated by rain streaks and raindrops, which significantly degenerate the performance of visual tasks and multimedia applications. The nature of videos exhibits redundant temporal cues for rain removal with higher stability. Traditional video deraining methods heavily rely on optical flow estimation and kernel-based manners, which have a limited receptive field. Yet, transformer architectures, while enabling long-term dependencies, bring about a significant increase in computational complexity. Recently, the linear-complexity operator of the state space models (SSMs) has contrarily facilitated efficient long-term temporal modeling, which is crucial for rain streaks and raindrops removal in videos. Unexpectedly, its uni-dimensional sequential process on videos destroys the local correlations across the spatio-temporal dimension by distancing adjacent pixels. To address this, we present an improved SSMs-based video deraining network (RainMamba) with a novel Hilbert scanning mechanism to better capture sequence-level local information. We also introduce a difference-guided dynamic contrastive locality learning strategy to enhance the patch-level self-similarity learning ability of the proposed network. Extensive experiments on four synthesized video deraining datasets and real-world rainy videos demonstrate the superiority of our network in the removal of rain streaks and raindrops.
Abstract:Regular screening and early discovery of uterine fibroid are crucial for preventing potential malignant transformations and ensuring timely, life-saving interventions. To this end, we collect and annotate the first ultrasound video dataset with 100 videos for uterine fibroid segmentation (UFUV). We also present Local-Global Reciprocal Network (LGRNet) to efficiently and effectively propagate the long-term temporal context which is crucial to help distinguish between uninformative noisy surrounding tissues and target lesion regions. Specifically, the Cyclic Neighborhood Propagation (CNP) is introduced to propagate the inter-frame local temporal context in a cyclic manner. Moreover, to aggregate global temporal context, we first condense each frame into a set of frame bottleneck queries and devise Hilbert Selective Scan (HilbertSS) to both efficiently path connect each frame and preserve the locality bias. A distribute layer is then utilized to disseminate back the global context for reciprocal refinement. Extensive experiments on UFUV and three public Video Polyp Segmentation (VPS) datasets demonstrate consistent improvements compared to state-of-the-art segmentation methods, indicating the effectiveness and versatility of LGRNet. Code, checkpoints, and dataset are available at https://github.com/bio-mlhui/LGRNet
Abstract:Traditional evaluation metrics like ROUGE compare lexical overlap between the reference and generated summaries without taking argumentative structure into account, which is important for legal summaries. In this paper, we propose a novel legal summarization evaluation framework that utilizes GPT-4 to generate a set of question-answer pairs that cover main points and information in the reference summary. GPT-4 is then used to generate answers based on the generated summary for the questions from the reference summary. Finally, GPT-4 grades the answers from the reference summary and the generated summary. We examined the correlation between GPT-4 grading with human grading. The results suggest that this question-answering approach with GPT-4 can be a useful tool for gauging the quality of the summary.
Abstract:We use the combination of argumentative zoning [1] and a legal argumentative scheme to create legal argumentative segments. Based on the argumentative segmentation, we propose a novel task of classifying argumentative segments of legal case decisions. GPT-3.5 is used to generate summaries based on argumentative segments. In terms of automatic evaluation metrics, our method generates higher quality argumentative summaries while leaving out less relevant context as compared to GPT-4 and non-GPT models.
Abstract:We evaluated the capability of generative pre-trained transformers~(GPT-4) in analysis of textual data in tasks that require highly specialized domain expertise. Specifically, we focused on the task of analyzing court opinions to interpret legal concepts. We found that GPT-4, prompted with annotation guidelines, performs on par with well-trained law student annotators. We observed that, with a relatively minor decrease in performance, GPT-4 can perform batch predictions leading to significant cost reductions. However, employing chain-of-thought prompting did not lead to noticeably improved performance on this task. Further, we demonstrated how to analyze GPT-4's predictions to identify and mitigate deficiencies in annotation guidelines, and subsequently improve the performance of the model. Finally, we observed that the model is quite brittle, as small formatting related changes in the prompt had a high impact on the predictions. These findings can be leveraged by researchers and practitioners who engage in semantic/pragmatic annotations of texts in the context of the tasks requiring highly specialized domain expertise.
Abstract:Interpreting the meaning of legal open-textured terms is a key task of legal professionals. An important source for this interpretation is how the term was applied in previous court cases. In this paper, we evaluate the performance of GPT-4 in generating factually accurate, clear and relevant explanations of terms in legislation. We compare the performance of a baseline setup, where GPT-4 is directly asked to explain a legal term, to an augmented approach, where a legal information retrieval module is used to provide relevant context to the model, in the form of sentences from case law. We found that the direct application of GPT-4 yields explanations that appear to be of very high quality on their surface. However, detailed analysis uncovered limitations in terms of the factual accuracy of the explanations. Further, we found that the augmentation leads to improved quality, and appears to eliminate the issue of hallucination, where models invent incorrect statements. These findings open the door to the building of systems that can autonomously retrieve relevant sentences from case law and condense them into a useful explanation for legal scholars, educators or practicing lawyers alike.
Abstract:In this paper, we explore legal argument mining using multiple levels of granularity. Argument mining has usually been conceptualized as a sentence classification problem. In this work, we conceptualize argument mining as a token-level (i.e., word-level) classification problem. We use a Longformer model to classify the tokens. Results show that token-level text classification identifies certain legal argument elements more accurately than sentence-level text classification. Token-level classification also provides greater flexibility to analyze legal texts and to gain more insight into what the model focuses on when processing a large amount of input data.