Abstract:Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) images capture high-resolution views of the retina with typically 200 spanning degrees. Accurate segmentation of vessels in UWF-SLO images is essential for detecting and diagnosing fundus disease. Recent studies have revealed that the selective State Space Model (SSM) in Mamba performs well in modeling long-range dependencies, which is crucial for capturing the continuity of elongated vessel structures. Inspired by this, we propose the first Serpentine Mamba (Serp-Mamba) network to address this challenging task. Specifically, we recognize the intricate, varied, and delicate nature of the tubular structure of vessels. Furthermore, the high-resolution of UWF-SLO images exacerbates the imbalance between the vessel and background categories. Based on the above observations, we first devise a Serpentine Interwoven Adaptive (SIA) scan mechanism, which scans UWF-SLO images along curved vessel structures in a snake-like crawling manner. This approach, consistent with vascular texture transformations, ensures the effective and continuous capture of curved vascular structure features. Second, we propose an Ambiguity-Driven Dual Recalibration (ADDR) module to address the category imbalance problem intensified by high-resolution images. Our ADDR module delineates pixels by two learnable thresholds and refines ambiguous pixels through a dual-driven strategy, thereby accurately distinguishing vessels and background regions. Experiment results on three datasets demonstrate the superior performance of our Serp-Mamba on high-resolution vessel segmentation. We also conduct a series of ablation studies to verify the impact of our designs. Our code shall be released upon publication of this work.
Abstract:Destination prediction has been a critical topic in transportation research, and there are a large number of studies. However, almost all existing studies are based on high predictability data conditions while pay less attention to the data condition with low predictability, where the regularity of single individuals is not exposed. Based on a certain period of observation, there is a fact that individuals may choose destinations beyond observation, which we call "potential destinations". The number of potential destinations is very large and can't be ignored for the data condition with low predictability formed by short-term observation.To reveal the choice pattern of potential destination of individuals under the data condition with low predictability, we propose a global optimization method based on knowledge graph embedding. First, we joint the trip data of all individuals by constructing Trip Knowledge Graph(TKG). Next, we optimize the general algorithm of knowledge graph embedding for our data and task in training strategy and objective function, then implement it on TKG. It can achieve global optimization for association paths that exist between almost any two entities in TKG. On this basis, a method for potential destination prediction is proposed, giving the possible ranking of unobserved destinations for each individual. In addition, we improve the performance by fusing static statistical information that is not passed to TKG. Finally, we validate our method in a real-world dataset, and the prediction results are highly consistent with individuals' potential destination choice behaviour.
Abstract:A new method for outlier detection and generation is introduced by lifting data into the space of probability distributions which are not analytically expressible, but from which samples can be drawn using a neural generator. Given a mixture of unknown latent inlier and outlier distributions, a Wasserstein double autoencoder is used to both detect and generate inliers and outliers. The proposed method, named WALDO (Wasserstein Autoencoder for Learning the Distribution of Outliers), is evaluated on classical data sets including MNIST, CIFAR10 and KDD99 for detection accuracy and robustness. We give an example of outlier detection on a real retail sales data set and an example of outlier generation for simulating intrusion attacks. However we foresee many application scenarios where WALDO can be used. To the best of our knowledge this is the first work that studies both outlier detection and generation together.
Abstract:Missing value problem in spatiotemporal traffic data has long been a challenging topic, in particular for large-scale and high-dimensional data with complex missing mechanisms and diverse degrees of missingness. Recent studies based on tensor nuclear norm have demonstrated the superiority of tensor learning in imputation tasks by effectively characterizing the complex correlations/dependencies in spatiotemporal data. However, despite the promising results, these approaches do not scale well to large tensors. In this paper, we focus on addressing the missing data imputation problem for large-scale spatiotemporal traffic data. To achieve both high accuracy and efficiency, we develop a scalable autoregressive tensor learning model---Low-Tubal-Rank Autoregressive Tensor Completion (LATC-Tubal)---based on the existing framework of Low-Rank Autoregressive Tensor Completion (LATC), which is well-suited for spatiotemporal traffic data that characterized by multidimensional structure of location$\times$ time of day $\times$ day. In particular, the proposed LATC-Tubal model involves a scalable tensor nuclear norm minimization scheme by integrating linear unitary transformation. Therefore, the tensor nuclear norm minimization can be solved by singular value thresholding on the transformed matrix of each day while the day-to-day correlation can be effectively preserved by the unitary transform matrix. Before setting up the experiment, we consider two large-scale 5-minute traffic speed data sets collected by the California PeMS system with 11160 sensors. We compare LATC-Tubal with state-of-the-art baseline models, and find that LATC-Tubal can achieve competitively accuracy with a significantly lower computational cost. In addition, the LATC-Tubal will also benefit other tasks in modeling large-scale spatiotemporal traffic data, such as network-level traffic forecasting.