Abstract:The rapid evolution of Vision Language Models (VLMs) has catalyzed significant advancements in artificial intelligence, expanding research across various disciplines, including Earth Observation (EO). While VLMs have enhanced image understanding and data processing within EO, their applications have predominantly focused on image content description. This limited focus overlooks their potential in geographic and scientific regression tasks, which are essential for diverse EO applications. To bridge this gap, this paper introduces a novel benchmark dataset, called \textbf{REO-Instruct} to unify regression and generation tasks specifically for the EO domain. Comprising 1.6 million multimodal EO imagery and language pairs, this dataset is designed to support both biomass regression and image content interpretation tasks. Leveraging this dataset, we develop \textbf{REO-VLM}, a groundbreaking model that seamlessly integrates regression capabilities with traditional generative functions. By utilizing language-driven reasoning to incorporate scientific domain knowledge, REO-VLM goes beyond solely relying on EO imagery, enabling comprehensive interpretation of complex scientific attributes from EO data. This approach establishes new performance benchmarks and significantly enhances the capabilities of environmental monitoring and resource management.
Abstract:Recently, the remarkable success of ChatGPT has sparked a renewed wave of interest in artificial intelligence (AI), and the advancements in visual language models (VLMs) have pushed this enthusiasm to new heights. Differring from previous AI approaches that generally formulated different tasks as discriminative models, VLMs frame tasks as generative models and align language with visual information, enabling the handling of more challenging problems. The remote sensing (RS) field, a highly practical domain, has also embraced this new trend and introduced several VLM-based RS methods that have demonstrated promising performance and enormous potential. In this paper, we first review the fundamental theories related to VLM, then summarize the datasets constructed for VLMs in remote sensing and the various tasks they addressed. Finally, we categorize the improvement methods into three main parts according to the core components of VLMs and provide a detailed introduction and comparison of these methods.
Abstract:Recently, the Vision Transformer (ViT) model has replaced the classical Convolutional Neural Network (ConvNet) in various computer vision tasks due to its superior performance. Even in hyperspectral image (HSI) classification field, ViT-based methods also show promising potential. Nevertheless, ViT encounters notable difficulties in processing HSI data. Its self-attention mechanism, which exhibits quadratic complexity, escalates computational costs. Additionally, ViT's substantial demand for training samples does not align with the practical constraints posed by the expensive labeling of HSI data. To overcome these challenges, we propose a 3D relational ConvNet named 3D-RCNet, which inherits both strengths of ConvNet and ViT, resulting in high performance in HSI classification. We embed the self-attention mechanism of Transformer into the convolutional operation of ConvNet to design 3D relational convolutional operation and use it to build the final 3D-RCNet. The proposed 3D-RCNet maintains the high computational efficiency of ConvNet while enjoying the flexibility of ViT. Additionally, the proposed 3D relational convolutional operation is a plug-and-play operation, which can be inserted into previous ConvNet-based HSI classification methods seamlessly. Empirical evaluations on three representative benchmark HSI datasets show that the proposed model outperforms previous ConvNet-based and ViT-based HSI approaches.
Abstract:Recently, some researchers started exploring the use of ViTs in tackling HSI classification and achieved remarkable results. However, the training of ViT models requires a considerable number of training samples, while hyperspectral data, due to its high annotation costs, typically has a relatively small number of training samples. This contradiction has not been effectively addressed. In this paper, aiming to solve this problem, we propose the single-direction tuning (SDT) strategy, which serves as a bridge, allowing us to leverage existing labeled HSI datasets even RGB datasets to enhance the performance on new HSI datasets with limited samples. The proposed SDT inherits the idea of prompt tuning, aiming to reuse pre-trained models with minimal modifications for adaptation to new tasks. But unlike prompt tuning, SDT is custom-designed to accommodate the characteristics of HSIs. The proposed SDT utilizes a parallel architecture, an asynchronous cold-hot gradient update strategy, and unidirectional interaction. It aims to fully harness the potent representation learning capabilities derived from training on heterologous, even cross-modal datasets. In addition, we also introduce a novel Triplet-structured transformer (Tri-Former), where spectral attention and spatial attention modules are merged in parallel to construct the token mixing component for reducing computation cost and a 3D convolution-based channel mixer module is integrated to enhance stability and keep structure information. Comparison experiments conducted on three representative HSI datasets captured by different sensors demonstrate the proposed Tri-Former achieves better performance compared to several state-of-the-art methods. Homologous, heterologous and cross-modal tuning experiments verified the effectiveness of the proposed SDT.
Abstract:Open-world instance segmentation (OWIS) aims to segment class-agnostic instances from images, which has a wide range of real-world applications such as autonomous driving. Most existing approaches follow a two-stage pipeline: performing class-agnostic detection first and then class-specific mask segmentation. In contrast, this paper proposes a single-stage framework to produce a mask for each instance directly. Also, instance mask annotations could be noisy in the existing datasets; to overcome this issue, we introduce a new regularization loss. Specifically, we first train an extra branch to perform an auxiliary task of predicting foreground regions (i.e. regions belonging to any object instance), and then encourage the prediction from the auxiliary branch to be consistent with the predictions of the instance masks. The key insight is that such a cross-task consistency loss could act as an error-correcting mechanism to combat the errors in annotations. Further, we discover that the proposed cross-task consistency loss can be applied to images without any annotation, lending itself to a semi-supervised learning method. Through extensive experiments, we demonstrate that the proposed method can achieve impressive results in both fully-supervised and semi-supervised settings. Compared to SOTA methods, the proposed method significantly improves the $AP_{100}$ score by 4.75\% in UVO$\rightarrow$UVO setting and 4.05\% in COCO$\rightarrow$UVO setting. In the case of semi-supervised learning, our model learned with only 30\% labeled data, even outperforms its fully-supervised counterpart with 50\% labeled data. The code will be released soon.
Abstract:Hyperspectral image (HSI) classification has been a hot topic for decides, as Hyperspectral image has rich spatial and spectral information, providing strong basis for distinguishing different land-cover objects. Benefiting from the development of deep learning technologies, deep learning based HSI classification methods have achieved promising performance. Recently, several neural architecture search (NAS) algorithms are proposed for HSI classification, which further improve the accuracy of HSI classification to a new level. In this paper, we revisit the search space designed in previous HSI classification NAS methods and propose a novel hybrid search space, where 3D convolution, 2D spatial convolution and 2D spectral convolution are employed. Compared search space proposed in previous works, the serach space proposed in this paper is more aligned with characteristic of HSI data that is HSIs have a relatively low spatial resolution and an extremely high spectral resolution. In addition, to further improve the classification accuracy, we attempt to graft the emerging transformer module on the automatically designed ConvNet to adding global information to local region focused features learned by ConvNet. We carry out comparison experiments on three public HSI datasets which have different spectral characteristics to evaluate the proposed method. Experimental results show that the proposed method achieves much better performance than comparison approaches, and both adopting the proposed hybrid search space and grafting transformer module improves classification accuracy. Especially on the most recently captured dataset Houston University, overall accuracy is improved by up to nearly 6 percentage points. Code will be available at: https://github.com/xmm/3D-ANAS-V2.
Abstract:Discriminative correlation filters (DCF) and siamese networks have achieved promising performance on visual tracking tasks thanks to their superior computational efficiency and reliable similarity metric learning, respectively. However, how to effectively take advantages of powerful deep networks, while maintaining the real-time response of DCF, remains a challenging problem. Embedding the cross-correlation operator as a separate layer into siamese networks is a popular choice to enhance the tracking accuracy. Being a key component of such a network, the correlation layer is updated online together with other parts of the network. Yet, when facing serious disturbance, fused trackers may still drift away from the target completely due to accumulated errors. To address these issues, we propose a coarse-to-fine tracking framework, which roughly infers the target state via an online-updating DCF module first and subsequently, finely locates the target through an offline-training asymmetric siamese network (ASN). Benefitting from the guidance of DCF and the learned channel weights obtained through exploiting the given ground-truth template, ASN refines feature representation and implements precise target localization. Systematic experiments on five popular tracking datasets demonstrate that the proposed DCF-ASN achieves the state-of-the-art performance while exhibiting good tracking efficiency.
Abstract:Benefiting from its ability to efficiently learn how an object is changing, correlation filters have recently demonstrated excellent performance for rapidly tracking objects. Designing effective features and handling model drifts are two important aspects for online visual tracking. This paper tackles these challenges by proposing a robust correlation tracking algorithm (RCT) based on two ideas: First, we propose a method to fuse features in order to more naturally describe the gradient and color information of the tracked object, and introduce the fused features into a background aware correlation filter to obtain the response map. Second, we present a novel strategy to significantly reduce noise in the response map and therefore ease the problem of model drift. Systematic comparative evaluations performed over multiple tracking benchmarks demonstrate the efficacy of the proposed approach.