Abstract:Attribution-based explanations are garnering increasing attention recently and have emerged as the predominant approach towards \textit{eXplanable Artificial Intelligence}~(XAI). However, the absence of consistent configurations and systematic investigations in prior literature impedes comprehensive evaluations of existing methodologies. In this work, we introduce {Meta-Rank}, an open platform for benchmarking attribution methods in the image domain. Presently, Meta-Rank assesses eight exemplary attribution methods using six renowned model architectures on four diverse datasets, employing both the \textit{Most Relevant First} (MoRF) and \textit{Least Relevant First} (LeRF) evaluation protocols. Through extensive experimentation, our benchmark reveals three insights in attribution evaluation endeavors: 1) evaluating attribution methods under disparate settings can yield divergent performance rankings; 2) although inconsistent across numerous cases, the performance rankings exhibit remarkable consistency across distinct checkpoints along the same training trajectory; 3) prior attempts at consistent evaluation fare no better than baselines when extended to more heterogeneous models and datasets. Our findings underscore the necessity for future research in this domain to conduct rigorous evaluations encompassing a broader range of models and datasets, and to reassess the assumptions underlying the empirical success of different attribution methods. Our code is publicly available at \url{https://github.com/TreeThree-R/Meta-Rank}.
Abstract:Recently, vision Transformers (ViTs) are developing rapidly and starting to challenge the domination of convolutional neural networks (CNNs) in the realm of computer vision (CV). With the general-purpose Transformer architecture for replacing the hard-coded inductive biases of convolution, ViTs have surpassed CNNs, especially in data-sufficient circumstances. However, ViTs are prone to over-fit on small datasets and thus rely on large-scale pre-training, which expends enormous time. In this paper, we strive to liberate ViTs from pre-training by introducing CNNs' inductive biases back to ViTs while preserving their network architectures for higher upper bound and setting up more suitable optimization objectives. To begin with, an agent CNN is designed based on the given ViT with inductive biases. Then a bootstrapping training algorithm is proposed to jointly optimize the agent and ViT with weight sharing, during which the ViT learns inductive biases from the intermediate features of the agent. Extensive experiments on CIFAR-10/100 and ImageNet-1k with limited training data have shown encouraging results that the inductive biases help ViTs converge significantly faster and outperform conventional CNNs with even fewer parameters.