Abstract:Single-channel speech enhancement is a challenging ill-posed problem focused on estimating clean speech from degraded signals. Existing studies have demonstrated the competitive performance of combining convolutional neural networks (CNNs) with Transformers in speech enhancement tasks. However, existing frameworks have not sufficiently addressed computational efficiency and have overlooked the natural multi-scale distribution of the spectrum. Additionally, the potential of CNNs in speech enhancement has yet to be fully realized. To address these issues, this study proposes a Deep Separable Dilated Dense Block (DSDDB) and a Group Prime Kernel Feedforward Channel Attention (GPFCA) module. Specifically, the DSDDB introduces higher parameter and computational efficiency to the Encoder/Decoder of existing frameworks. The GPFCA module replaces the position of the Conformer, extracting deep temporal and frequency features of the spectrum with linear complexity. The GPFCA leverages the proposed Group Prime Kernel Feedforward Network (GPFN) to integrate multi-granularity long-range, medium-range, and short-range receptive fields, while utilizing the properties of prime numbers to avoid periodic overlap effects. Experimental results demonstrate that PrimeK-Net, proposed in this study, achieves state-of-the-art (SOTA) performance on the VoiceBank+Demand dataset, reaching a PESQ score of 3.61 with only 1.41M parameters.
Abstract:Speech enhancement aims to improve speech quality and intelligibility in noisy environments. Recent advancements have concentrated on deep neural networks, particularly employing the Two-Stage (TS) architecture to enhance feature extraction. However, the complexity and size of these models remain significant, which limits their applicability in resource-constrained scenarios. Designing models suitable for edge devices presents its own set of challenges. Narrow lightweight models often encounter performance bottlenecks due to uneven loss landscapes. Additionally, advanced operators such as Transformers or Mamba may lack the practical adaptability and efficiency that convolutional neural networks (CNNs) offer in real-world deployments. To address these challenges, we propose Dense-TSNet, an innovative ultra-lightweight speech enhancement network. Our approach employs a novel Dense Two-Stage (Dense-TS) architecture, which, compared to the classic Two-Stage architecture, ensures more robust refinement of the objective function in the later training stages. This leads to improved final performance, addressing the early convergence limitations of the baseline model. We also introduce the Multi-View Gaze Block (MVGB), which enhances feature extraction by incorporating global, channel, and local perspectives through convolutional neural networks (CNNs). Furthermore, we discuss how the choice of loss function impacts perceptual quality. Dense-TSNet demonstrates promising performance with a compact model size of around 14K parameters, making it particularly well-suited for deployment in resource-constrained environments.