Abstract:As communication systems advance towards the future 6G era, the incorporation of large-scale antenna arrays in base stations (BSs) presents challenges such as increased hardware costs and energy consumption. To address these issues, the use of one-bit analog-to-digital converters (ADCs)/digital-to-analog converters (DACs) has gained significant attentions. This paper focuses on one-bit multiple-input multiple-output (MIMO) detection in an uplink multiuser transmission scenario where the BS employs one-bit ADCs. One-bit quantization retains only the sign information and loses the amplitude information, which poses a unique challenge in the corresponding detection problem. The maximum-likelihood (ML) formulation of one-bit MIMO detection has a challenging likelihood function that hinders the application of many high-performance detectors developed for classic MIMO detection (under high-resolution ADCs). While many approximate methods for the ML detection problem have been studied, it lacks an efficient global algorithm. This paper fills this gap by proposing an efficient branch-and-bound algorithm, which is guaranteed to find the global solution of the one-bit ML MIMO detection problem. Additionally, a new amplitude retrieval (AR) detection approach is developed, incorporating explicit amplitude variables into the problem formulation. The AR approach yields simpler objective functions that enable the development of efficient algorithms offering both global and approximate solutions. The paper also contributes to the computational complexity analysis of both ML and AR detection problems. Extensive simulations are conducted to demonstrate the effectiveness and efficiency of the proposed formulations and algorithms.
Abstract:There has been growing interest in implementing massive MIMO systems by one-bit analog-to-digital converters (ADCs), which have the benefit of reducing the power consumption and hardware complexity. One-bit MIMO detection arises in such a scenario. It aims to detect the multiuser signals from the one-bit quantized received signals in an uplink channel. In this paper, we consider one-bit maximum-likelihood (ML) MIMO detection in massive MIMO systems, which amounts to solving a large-scale nonlinear integer programming problem. We propose an efficient global algorithm for solving the one-bit ML MIMO detection problem. We first reformulate the problem as a mixed integer linear programming (MILP) problem that has a massive number of linear constraints. The massive number of linear constraints raises computational challenges. To solve the MILP problem efficiently, we custom build a light-weight branch-and-bound tree search algorithm, where the linear constraints are incrementally added during the tree search procedure and only small-size linear programming subproblems need to be solved at each iteration. We provide simulation results to demonstrate the efficiency of the proposed method.