Abstract:Neural Radiance Fields (NeRF) have achieved remarkable progress in neural rendering. Extracting geometry from NeRF typically relies on the Marching Cubes algorithm, which uses a hand-crafted threshold to define the level set. However, this threshold-based approach requires laborious and scenario-specific tuning, limiting its practicality for real-world applications. In this work, we seek to enhance the efficiency of this method during the training time. To this end, we introduce a spiking neuron mechanism that dynamically adjusts the threshold, eliminating the need for manual selection. Despite its promise, directly training with the spiking neuron often results in model collapse and noisy outputs. To overcome these challenges, we propose a round-robin strategy that stabilizes the training process and enables the geometry network to achieve a sharper and more precise density distribution with minimal computational overhead. We validate our approach through extensive experiments on both synthetic and real-world datasets. The results show that our method significantly improves the performance of threshold-based techniques, offering a more robust and efficient solution for NeRF geometry extraction.
Abstract:Neural surface reconstruction relies heavily on accurate camera poses as input. Despite utilizing advanced pose estimators like COLMAP or ARKit, camera poses can still be noisy. Existing pose-NeRF joint optimization methods handle poses with small noise (inliers) effectively but struggle with large noise (outliers), such as mirrored poses. In this work, we focus on mitigating the impact of outlier poses. Our method integrates an inlier-outlier confidence estimation scheme, leveraging scene graph information gathered during the data preparation phase. Unlike previous works directly using rendering metrics as the reference, we employ a detached color network that omits the viewing direction as input to minimize the impact caused by shape-radiance ambiguities. This enhanced confidence updating strategy effectively differentiates between inlier and outlier poses, allowing us to sample more rays from inlier poses to construct more reliable radiance fields. Additionally, we introduce a re-projection loss based on the current Signed Distance Function (SDF) and pose estimations, strengthening the constraints between matching image pairs. For outlier poses, we adopt a Monte Carlo re-localization method to find better solutions. We also devise a scene graph updating strategy to provide more accurate information throughout the training process. We validate our approach on the SG-NeRF and DTU datasets. Experimental results on various datasets demonstrate that our methods can consistently improve the reconstruction qualities and pose accuracies.
Abstract:Current studies on semantic communications mainly focus on efficiently extracting semantic information to reduce bandwidth usage between a transmitter and a user. Although significant process has been made in the semantic communications, a fundamental design problem is that the semantic information is extracted based on certain criteria at the transmitter side along, without considering the user's actual requirements. As a result, critical information that is of primary concern to the user may be lost. In such cases, the semantic transmission becomes meaningless to the user, as all received information is irrelevant to the user's interests. To solve this problem, this paper presents a user centric semantic communication system, where the user sends its request for the desired semantic information to the transmitter at the start of each transmission. Then, the transmitter extracts the required semantic information accordingly. A key challenge is how the transmitter can understand the user's requests for semantic information and extract the required semantic information in a reasonable and robust manner. We solve this challenge by designing a well-structured framework and leveraging off-the-shelf products, such as GPT-4, along with several specialized tools for detection and estimation. Evaluation results demonstrate the feasibility and effectiveness of the proposed user centric semantic communication system.
Abstract:Due to circuit failures, defective elements that cannot adaptively adjust the phase shifts of their impinging signals in a desired manner may exist on an intelligent reflecting surface (IRS). Traditional way to find these defective IRS elements requires a thorough diagnosis of all the circuits belonging to a huge number of IRS elements, which is practically challenging. In this paper, we will devise a novel approach under which a transmitter sends known pilot signals and a receiver localizes all the defective IRS elements just based on its over-the-air measurements reflected from the IRS. The key lies in the fact that the over-the-air measurements at the receiver side are functions of the set of defective IRS elements. Based on this observation, we propose a bisection based method to localize all the defective IRS elements. Specifically, at each time slot, we properly control the desired phase shifts of all the IRS elements such that half of the considered regime that is not useful to localize the defective elements can be found based on the received signals and removed. Via numerical results, it is shown that our proposed bisection method can exploit the over-the-air measurements to localize all the defective IRS elements quickly and accurately.
Abstract:Spiking Neural Networks (SNNs) are capable of encoding and processing temporal information in a biologically plausible way. However, most existing SNN-based methods for image tasks do not fully exploit this feature. Moreover, they often overlook the role of adaptive threshold in spiking neurons, which can enhance their dynamic behavior and learning ability. To address these issues, we propose a novel method for image decoding based on temporal attention (TAID) and an adaptive Leaky-Integrate-and-Fire (ALIF) neuron model. Our method leverages the temporal information of SNN outputs to generate high-quality images that surpass the state-of-the-art (SOTA) in terms of Inception score, Fr\'echet Inception Distance, and Fr\'echet Autoencoder Distance. Furthermore, our ALIF neuron model achieves remarkable classification accuracy on MNIST (99.78\%) and CIFAR-10 (93.89\%) datasets, demonstrating the effectiveness of learning adaptive thresholds for spiking neurons. The code is available at https://github.com/bollossom/ICLR_TINY_SNN.
Abstract:This paper revisits the identity detection problem under the current grant-free protocol in massive machine-type communications (mMTC) by asking the following question: for stable identity detection performance, is it enough to permit active devices to transmit preambles without any handshaking with the base station (BS)? Specifically, in the current grant-free protocol, the BS blindly allocates a fixed length of preamble to devices for identity detection as it lacks the prior information on the number of active devices $K$. However, in practice, $K$ varies dynamically over time, resulting in degraded identity detection performance especially when $K$ is large. Consequently, the current grant-free protocol fails to ensure stable identity detection performance. To address this issue, we propose a two-stage communication protocol which consists of estimation of $K$ in Phase I and detection of identities of active devices in Phase II. The preamble length for identity detection in Phase II is dynamically allocated based on the estimated $K$ in Phase I through a table lookup manner such that the identity detection performance could always be better than a predefined threshold. In addition, we design an algorithm for estimating $K$ in Phase I, and exploit the estimated $K$ to reduce the computational complexity of the identity detector in Phase II. Numerical results demonstrate the effectiveness of the proposed two-stage communication protocol and algorithms.
Abstract:Linear chirp-based underwater acoustic communication has been widely used due to its reliability and long-range transmission capability. However, unlike the counterpart chirp technology in wireless -- LoRa, its throughput is severely limited by the number of modulated chirps in a symbol. The fundamental challenge lies in the underwater multi-path channel, where the delayed copied of one symbol may cause inter-symbol and intra-symbol interfere. In this paper, we present UWLoRa+, a system that realizes the same chirp modulation as LoRa with higher data rate, and enhances LoRa's design to address the multi-path challenge via the following designs: a) we replace the linear chirp used by LoRa with the non-linear chirp to reduce the signal interference range and the collision probability; b) we design an algorithm that first demodulates each path and then combines the demodulation results of detected paths; and c) we replace the Hamming codes used by LoRa with the non-binary LDPC codes to mitigate the impact of the inevitable collision.Experiment results show that the new designs improve the bit error rate (BER) by 3x, and the packet error rate (PER) significantly, compared with the LoRa's naive design. Compared with an state-of-the-art system for decoding underwater LoRa chirp signal, UWLoRa+ improves the throughput by up to 50 times.
Abstract:This paper focuses on the covariance-based activity detection problem in a multi-cell massive multiple-input multiple-output (MIMO) system. In this system, active devices transmit their signature sequences to multiple base stations (BSs), and the BSs cooperatively detect the active devices based on the received signals. While the scaling law for the covariance-based activity detection in the single-cell scenario has been extensively analyzed in the literature, this paper aims to analyze the scaling law for the covariance-based activity detection in the multi-cell massive MIMO system. Specifically, this paper demonstrates a quadratic scaling law in the multi-cell system, under the assumption that the exponent in the classical path-loss model is greater than 2. This finding shows that, in the multi-cell MIMO system, the maximum number of active devices that can be detected correctly in each cell increases quadratically with the length of the signature sequence and decreases logarithmically with the number of cells (as the number of antennas tends to infinity). Moreover, in addition to analyzing the scaling law for the signature sequences randomly and uniformly distributed on a sphere, the paper also establishes the scaling law for signature sequences generated from a finite alphabet, which are easier to generate and store. Moreover, this paper proposes two efficient accelerated coordinate descent (CD) algorithms with a convergence guarantee for solving the device activity detection problem. The first algorithm reduces the complexity of CD by using an inexact coordinate update strategy. The second algorithm avoids unnecessary computations of CD by using an active set selection strategy. Simulation results show that the proposed algorithms exhibit excellent performance in terms of computational efficiency and detection error probability.
Abstract:Spiking neural networks (SNNs) are emerging as an energy-efficient alternative to traditional artificial neural networks (ANNs) due to their unique spike-based event-driven nature. Coding is crucial in SNNs as it converts external input stimuli into spatio-temporal feature sequences. However, most existing deep SNNs rely on direct coding that generates powerless spike representation and lacks the temporal dynamics inherent in human vision. Hence, we introduce Gated Attention Coding (GAC), a plug-and-play module that leverages the multi-dimensional gated attention unit to efficiently encode inputs into powerful representations before feeding them into the SNN architecture. GAC functions as a preprocessing layer that does not disrupt the spike-driven nature of the SNN, making it amenable to efficient neuromorphic hardware implementation with minimal modifications. Through an observer model theoretical analysis, we demonstrate GAC's attention mechanism improves temporal dynamics and coding efficiency. Experiments on CIFAR10/100 and ImageNet datasets demonstrate that GAC achieves state-of-the-art accuracy with remarkable efficiency. Notably, we improve top-1 accuracy by 3.10\% on CIFAR100 with only 6-time steps and 1.07\% on ImageNet while reducing energy usage to 66.9\% of the previous works. To our best knowledge, it is the first time to explore the attention-based dynamic coding scheme in deep SNNs, with exceptional effectiveness and efficiency on large-scale datasets.
Abstract:For intelligent reflecting surface (IRS) aided downlink communication in frequency division duplex (FDD) systems, the overhead for the base station (BS) to acquire channel state information (CSI) is extremely high under the conventional ``estimate-then-quantize'' scheme, where the users first estimate and then feed back their channels to the BS. Recently, [1] revealed a strong correlation in different users' cascaded channels stemming from their common BS-IRS channel component, and leveraged such a correlation to significantly reduce the pilot transmission overhead in IRS-aided uplink communication. In this paper, we aim to exploit the above channel property for reducing the overhead of both pilot transmission and feedback transmission in IRS-aided downlink communication. Different from the uplink counterpart where the BS possesses the pilot signals containing the CSI of all the users, in downlink communication, the distributed users merely receive the pilot signals containing their own CSI and cannot leverage the correlation in different users' channels revealed in [1]. To tackle this challenge, this paper proposes a novel ``quantize-then-estimate'' protocol in FDD IRS-aided downlink communication. Specifically, the users first quantize their received pilot signals, instead of the channels estimated from the pilot signals, and then transmit the quantization bits to the BS. After de-quantizing the pilot signals received by all the users, the BS estimates all the cascaded channels by leveraging the correlation embedded in them, similar to the uplink scenario. Furthermore, we manage to show both analytically and numerically the great overhead reduction in terms of pilot transmission and feedback transmission arising from our proposed ``quantize-then-estimate'' protocol.