Abstract:Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries. However, many natural questions do not have good answers: about 25\% contain false assumptions~\cite{Yu2023:CREPE}, and over 50\% are ambiguous~\cite{Min2020:AmbigQA}. RAG agents need high-quality data to improve their responses to confusing questions. This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus. We conduct an empirical comparative evaluation of several large language models as RAG agents to measure the accuracy of confusion detection and appropriate response generation. We contribute a benchmark dataset to the public domain.
Abstract:Language-queried target sound extraction (TSE) aims to extract specific sounds from mixtures based on language queries. Traditional fully-supervised training schemes require extensively annotated parallel audio-text data, which are labor-intensive. We introduce a language-free training scheme, requiring only unlabelled audio clips for TSE model training by utilizing the multi-modal representation alignment nature of the contrastive language-audio pre-trained model (CLAP). In a vanilla language-free training stage, target audio is encoded using the pre-trained CLAP audio encoder to form a condition embedding for the TSE model, while during inference, user language queries are encoded by CLAP text encoder. This straightforward approach faces challenges due to the modality gap between training and inference queries and information leakage from direct exposure to target audio during training. To address this, we propose a retrieval-augmented strategy. Specifically, we create an embedding cache using audio captions generated by a large language model (LLM). During training, target audio embeddings retrieve text embeddings from this cache to use as condition embeddings, ensuring consistent modalities between training and inference and eliminating information leakage. Extensive experiment results show that our retrieval-augmented approach achieves consistent and notable performance improvements over existing state-of-the-art with better generalizability.
Abstract:In knowledge-intensive tasks such as open-domain question answering (OpenQA), Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge. To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources, thereby positioning the retriever as a pivotal component. Although dense retrieval demonstrates state-of-the-art performance, its training poses challenges due to the scarcity of ground-truth evidence, largely attributed to the high costs of human annotation. In this paper, we propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers. Specifically, we rerank the top-$K$ passages retrieved via BM25 by assessing the probability that LLMs will generate the correct answer based on the question and each passage. The highest-ranking passages are then used as positive training examples for dense retrieval. Our comprehensive experiments across four publicly available OpenQA datasets demonstrate that our approach enhances both retrieval and OpenQA performance compared to baseline models.
Abstract:Optimizing edge caching is crucial for the advancement of next-generation (nextG) wireless networks, ensuring high-speed and low-latency services for mobile users. Existing data-driven optimization approaches often lack awareness of the distribution of random data variables and focus solely on optimizing cache hit rates, neglecting potential reliability concerns, such as base station overload and unbalanced cache issues. This oversight can result in system crashes and degraded user experience. To bridge this gap, we introduce a novel digital twin-assisted optimization framework, called D-REC, which integrates reinforcement learning (RL) with diverse intervention modules to ensure reliable caching in nextG wireless networks. We first develop a joint vertical and horizontal twinning approach to efficiently create network digital twins, which are then employed by D-REC as RL optimizers and safeguards, providing ample datasets for training and predictive evaluation of our cache replacement policy. By incorporating reliability modules into a constrained Markov decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints, minimizing the risk of network failures. Theoretical analysis demonstrates comparable convergence rates between D-REC and vanilla data-driven methods without compromising caching performance. Extensive experiments validate that D-REC outperforms conventional approaches in cache hit rate and load balancing while effectively enforcing predetermined reliability intervention modules.
Abstract:Effective passage retrieval and reranking methods have been widely utilized to identify suitable candidates in open-domain question answering tasks, recent studies have resorted to LLMs for reranking the retrieved passages by the log-likelihood of the question conditioned on each passage. Although these methods have demonstrated promising results, the performance is notably sensitive to the human-written prompt (or hard prompt), and fine-tuning LLMs can be computationally intensive and time-consuming. Furthermore, this approach limits the leverage of question-passage relevance pairs and passage-specific knowledge to enhance the ranking capabilities of LLMs. In this paper, we propose passage-specific prompt tuning for reranking in open-domain question answering (PSPT): a parameter-efficient method that fine-tunes learnable passage-specific soft prompts, incorporating passage-specific knowledge from a limited set of question-passage relevance pairs. The method involves ranking retrieved passages based on the log-likelihood of the model generating the question conditioned on each passage and the learned soft prompt. We conducted extensive experiments utilizing the Llama-2-chat-7B model across three publicly available open-domain question answering datasets and the results demonstrate the effectiveness of the proposed approach.
Abstract:Parameter Efficient Fine-Tuning (PEFT) methods have been extensively utilized in Large Language Models (LLMs) to improve the down-streaming tasks without the cost of fine-tuing the whole LLMs. Recent studies have shown how to effectively use PEFT for fine-tuning LLMs in ranking tasks with convincing performance; there are some limitations, including the learned prompt being fixed for different documents, overfitting to specific tasks, and low adaptation ability. In this paper, we introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak the information of the true queries to LLMs and then make the generation of true queries from input documents much easier. Specifically, we utilize the query to extract the top-$k$ tokens from concatenated documents, serving as contextual clues. We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents, guiding the LLMs to generate more document-specific synthetic queries, thereby further improving the reranking performance. Extensive experiments are conducted on four public datasets, demonstrating the effectiveness of our proposed approach.
Abstract:While achieving remarkable progress in a broad range of tasks, large language models (LLMs) remain significantly limited in properly using massive external tools. Existing in-context learning approaches simply format tools into a list of plain text descriptions and input them to LLMs, from which, LLMs generate a sequence of tool calls to solve problems step by step. Such a paradigm ignores the intrinsic dependency between tools and offloads all reasoning loads to LLMs, making them restricted to a limited number of specifically designed tools. It thus remains challenging for LLMs to operate on a library of massive tools, casting a great limitation when confronted with real-world scenarios. This paper proposes ToolNet, a plug-and-play framework that scales up the number of tools to thousands with a moderate increase in token consumption. ToolNet organizes tools into a directed graph. Each node represents a tool, and weighted edges denote tool transition. Starting from an initial tool node, an LLM navigates in the graph by iteratively choosing the next one from its successors until the task is resolved. Extensive experiments show that ToolNet can achieve impressive results in challenging multi-hop tool learning datasets and is resilient to tool failures.
Abstract:Universal sound separation (USS) aims to extract arbitrary types of sounds from real-world sound recordings. Language-queried target sound extraction (TSE) is an effective approach to achieving USS. Such systems consist of two components: a query network that converts user queries into conditional embeddings, and a separation network that extracts the target sound based on conditional embeddings. Existing methods mainly suffer from two issues: firstly, they require training a randomly initialized model from scratch, lacking the utilization of pre-trained models, and substantial data and computational resources are needed to ensure model convergence; secondly, existing methods need to jointly train a query network and a separation network, which tends to lead to overfitting. To address these issues, we build the CLAPSep model based on contrastive language-audio pre-trained model (CLAP). We achieve this by using a pre-trained text encoder of CLAP as the query network and introducing pre-trained audio encoder weights of CLAP into the separation network to fully utilize the prior knowledge embedded in the pre-trained model to assist in target sound extraction tasks. Extensive experimental results demonstrate that the proposed method saves training resources while ensuring the model's performance and generalizability. Additionally, we explore the model's ability to comprehensively utilize language/audio multi-modal and positive/negative multi-valent user queries, enhancing system performance while providing diversified application modes.
Abstract:Trajectory representation learning on a network enhances our understanding of vehicular traffic patterns and benefits numerous downstream applications. Existing approaches using classic machine learning or deep learning embed trajectories as dense vectors, which lack interpretability and are inefficient to store and analyze in downstream tasks. In this paper, an explainable trajectory representation learning framework through dictionary learning is proposed. Given a collection of trajectories on a network, it extracts a compact dictionary of commonly used subpaths called "pathlets", which optimally reconstruct each trajectory by simple concatenations. The resulting representation is naturally sparse and encodes strong spatial semantics. Theoretical analysis of our proposed algorithm is conducted to provide a probabilistic bound on the estimation error of the optimal dictionary. A hierarchical dictionary learning scheme is also proposed to ensure the algorithm's scalability on large networks, leading to a multi-scale trajectory representation. Our framework is evaluated on two large-scale real-world taxi datasets. Compared to previous work, the dictionary learned by our method is more compact and has better reconstruction rate for new trajectories. We also demonstrate the promising performance of this method in downstream tasks including trip time prediction task and data compression.
Abstract:Target-speaker automatic speech recognition (ASR) aims to transcribe the desired speech of a target speaker from multi-talker overlapped utterances. Most of the existing target-speaker ASR (TS-ASR) methods involve either training from scratch or fully fine-tuning a pre-trained model, leading to significant training costs and becoming inapplicable to large foundation models. This work leverages prompt tuning, a parameter-efficient fine-tuning approach, to extend Whisper, a large-scale single-talker ASR model, to TS-ASR. Experimental results show that prompt tuning can achieve performance comparable to state-of-the-art full fine-tuning approaches while only requiring about 1% of task-specific model parameters. Notably, the original Whisper's features, such as inverse text normalization and timestamp prediction, are retained in target-speaker ASR, keeping the generated transcriptions natural and informative.