Abstract:Neurons in auto-regressive language models like GPT-2 can be interpreted by analyzing their activation patterns. Recent studies have shown that techniques such as dictionary learning, a form of post-hoc sparse coding, enhance this neuron-level interpretability. In our research, we are driven by the goal to fundamentally improve neural network interpretability by embedding sparse coding directly within the model architecture, rather than applying it as an afterthought. In our study, we introduce a white-box transformer-like architecture named Coding RAte TransformEr (CRATE), explicitly engineered to capture sparse, low-dimensional structures within data distributions. Our comprehensive experiments showcase significant improvements (up to 103% relative improvement) in neuron-level interpretability across a variety of evaluation metrics. Detailed investigations confirm that this enhanced interpretability is steady across different layers irrespective of the model size, underlining CRATE's robust performance in enhancing neural network interpretability. Further analysis shows that CRATE's increased interpretability comes from its enhanced ability to consistently and distinctively activate on relevant tokens. These findings point towards a promising direction for creating white-box foundation models that excel in neuron-level interpretation.
Abstract:Regression on medical image sequences can capture temporal image pattern changes and predict images at missing or future time points. However, existing geodesic regression methods limit their regression performance by a strong underlying assumption of linear dynamics, while diffusion-based methods have high computational costs and lack constraints to preserve image topology. In this paper, we propose an optimization-based new framework called NODER, which leverages neural ordinary differential equations to capture complex underlying dynamics and reduces its high computational cost of handling high-dimensional image volumes by introducing the latent space. We compare our NODER with two recent regression methods, and the experimental results on ADNI and ACDC datasets demonstrate that our method achieves the state-of-the-art performance in 3D image regression. Our model needs only a couple of images in a sequence for prediction, which is practical, especially for clinical situations where extremely limited image time series are available for analysis. Our source code is available at https://github.com/ZedKing12138/NODER-pytorch.
Abstract:Training corpuses for vision language models (VLMs) typically lack sufficient amounts of decision-centric data. This renders off-the-shelf VLMs sub-optimal for decision-making tasks such as in-the-wild device control through graphical user interfaces (GUIs). While training with static demonstrations has shown some promise, we show that such methods fall short for controlling real GUIs due to their failure to deal with real-world stochasticity and non-stationarity not captured in static observational data. This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents through fine-tuning a pre-trained VLM in two stages: offline RL to initialize the model, followed by offline-to-online RL. To do this, we build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator and develop a simple yet effective RL approach for learning in this domain. Our approach runs advantage-weighted RL with advantage estimators enhanced to account for stochasticity along with an automatic curriculum for deriving maximal learning signal. We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild (AitW) dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement -- from 17.7 to 67.2% success rate -- over supervised fine-tuning with static human demonstration data. These results significantly surpass not only the prior best agents, including AppAgent with GPT-4V (8.3% success rate) and the 17B CogAgent trained with AitW data (38.5%), but also the prior best autonomous RL approach based on filtered behavior cloning (57.8%), thereby establishing a new state-of-the-art for digital agents for in-the-wild device control.
Abstract:Large vision-language models (VLMs) fine-tuned on specialized visual instruction-following data have exhibited impressive language reasoning capabilities across various scenarios. However, this fine-tuning paradigm may not be able to efficiently learn optimal decision-making agents in multi-step goal-directed tasks from interactive environments. To address this challenge, we propose an algorithmic framework that fine-tunes VLMs with reinforcement learning (RL). Specifically, our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning, enabling the VLM to efficiently explore intermediate reasoning steps that lead to the final text-based action. Next, the open-ended text output is parsed into an executable action to interact with the environment to obtain goal-directed task rewards. Finally, our framework uses these task rewards to fine-tune the entire VLM with RL. Empirically, we demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks, enabling 7b models to outperform commercial models such as GPT4-V or Gemini. Furthermore, we find that CoT reasoning is a crucial component for performance improvement, as removing the CoT reasoning results in a significant decrease in the overall performance of our method.
Abstract:In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
Abstract:Open-domain dialog involves generating search queries that help obtain relevant knowledge for holding informative conversations. However, it can be challenging to determine what information to retrieve when the user is passive and does not express a clear need or request. To tackle this issue, we present a novel approach that focuses on generating internet search queries that are guided by social commonsense. Specifically, we leverage a commonsense dialog system to establish connections related to the conversation topic, which subsequently guides our query generation. Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation. Through extensive evaluations, we show that our approach overcomes limitations of existing query generation techniques that rely solely on explicit dialog information, and produces search queries that are more relevant, specific, and compelling, ultimately resulting in more engaging responses.
Abstract:The Iterative Closest Point (ICP) algorithm is one of the most important algorithms for geometric alignment of three-dimensional surface registration, which is frequently used in computer vision tasks, including the Simultaneous Localization And Mapping (SLAM) tasks. In this paper, we illustrate the theoretical principles of the ICP algorithm, how it can be used in surface registration tasks, and the traditional taxonomy of the variants of the ICP algorithm. As SLAM is becoming a popular topic, we also introduce a SLAM-oriented taxonomy of the ICP algorithm, based on the characteristics of each type of SLAM task, including whether the SLAM task is online or not and whether the landmarks are present as features in the SLAM task. We make a synthesis of each type of SLAM task by comparing several up-to-date research papers and analyzing their implementation details.
Abstract:Action recognition and pose estimation from videos are closely related to understand human motions, but more literature focuses on how to solve pose estimation tasks alone from action recognition. This research shows a faster and more flexible training method for VideoPose3D which is based on action recognition. This model is fed with the same type of action as the type that will be estimated, and different types of actions can be trained separately. Evidence has shown that, for common pose-estimation tasks, this model requires a relatively small amount of data to carry out similar results with the original research, and for action-oriented tasks, it outperforms the original research by 4.5% with a limited receptive field size and training epoch on Velocity Error of MPJPE. This model can handle both action-oriented and common pose-estimation problems.