Abstract:We propose a general framework for deriving generalization bounds for parallel positively homogeneous neural networks--a class of neural networks whose input-output map decomposes as the sum of positively homogeneous maps. Examples of such networks include matrix factorization and sensing, single-layer multi-head attention mechanisms, tensor factorization, deep linear and ReLU networks, and more. Our general framework is based on linking the non-convex empirical risk minimization (ERM) problem to a closely related convex optimization problem over prediction functions, which provides a global, achievable lower-bound to the ERM problem. We exploit this convex lower-bound to perform generalization analysis in the convex space while controlling the discrepancy between the convex model and its non-convex counterpart. We apply our general framework to a wide variety of models ranging from low-rank matrix sensing, to structured matrix sensing, two-layer linear networks, two-layer ReLU networks, and single-layer multi-head attention mechanisms, achieving generalization bounds with a sample complexity that scales almost linearly with the network width.
Abstract:With the recent success of representation learning methods, which includes deep learning as a special case, there has been considerable interest in developing techniques that incorporate known physical constraints into the learned representation. As one example, in many applications that involve a signal propagating through physical media (e.g., optics, acoustics, fluid dynamics, etc), it is known that the dynamics of the signal must satisfy constraints imposed by the wave equation. Here we propose a matrix factorization technique that decomposes such signals into a sum of components, where each component is regularized to ensure that it {nearly} satisfies wave equation constraints. Although our proposed formulation is non-convex, we prove that our model can be efficiently solved to global optimality. Through this line of work we establish theoretical connections between wave-informed learning and filtering theory in signal processing. We further demonstrate the application of this work on modal analysis problems commonly arising in structural diagnostics and prognostics.
Abstract:In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .
Abstract:In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at \url{https://github.com/Ma-Lab-Berkeley/CRATE}.
Abstract:There is a growing interest in the machine learning community in developing predictive algorithms that are "interpretable by design". Towards this end, recent work proposes to make interpretable decisions by sequentially asking interpretable queries about data until a prediction can be made with high confidence based on the answers obtained (the history). To promote short query-answer chains, a greedy procedure called Information Pursuit (IP) is used, which adaptively chooses queries in order of information gain. Generative models are employed to learn the distribution of query-answers and labels, which is in turn used to estimate the most informative query. However, learning and inference with a full generative model of the data is often intractable for complex tasks. In this work, we propose Variational Information Pursuit (V-IP), a variational characterization of IP which bypasses the need for learning generative models. V-IP is based on finding a query selection strategy and a classifier that minimizes the expected cross-entropy between true and predicted labels. We then demonstrate that the IP strategy is the optimal solution to this problem. Therefore, instead of learning generative models, we can use our optimal strategy to directly pick the most informative query given any history. We then develop a practical algorithm by defining a finite-dimensional parameterization of our strategy and classifier using deep networks and train them end-to-end using our objective. Empirically, V-IP is 10-100x faster than IP on different Vision and NLP tasks with competitive performance. Moreover, V-IP finds much shorter query chains when compared to reinforcement learning which is typically used in sequential-decision-making problems. Finally, we demonstrate the utility of V-IP on challenging tasks like medical diagnosis where the performance is far superior to the generative modelling approach.
Abstract:Clustering data lying close to a union of low-dimensional manifolds, with each manifold as a cluster, is a fundamental problem in machine learning. When the manifolds are assumed to be linear subspaces, many methods succeed using low-rank and sparse priors, which have been studied extensively over the past two decades. Unfortunately, most real-world datasets can not be well approximated by linear subspaces. On the other hand, several works have proposed to identify the manifolds by learning a feature map such that the data transformed by the map lie in a union of linear subspaces, even though the original data are from non-linear manifolds. However, most works either assume knowledge of the membership of samples to clusters, or are shown to learn trivial representations. In this paper, we propose to simultaneously perform clustering and learn a union-of-subspace representation via Maximal Coding Rate Reduction. Experiments on synthetic and realistic datasets show that the proposed method achieves clustering accuracy comparable with state-of-the-art alternatives, while being more scalable and learning geometrically meaningful representations.
Abstract:Smoothness and low dimensional structures play central roles in improving generalization and stability in learning and statistics. The combination of these properties has led to many advances in semi-supervised learning, generative modeling, and control of dynamical systems. However, learning smooth functions is generally challenging, except in simple cases such as learning linear or kernel models. Typical methods are either too conservative, relying on crude upper bounds such as spectral normalization, too lax, penalizing smoothness on average, or too computationally intensive, requiring the solution of large-scale semi-definite programs. These issues are only exacerbated when trying to simultaneously exploit low dimensionality using, e.g., manifolds. This work proposes to overcome these obstacles by combining techniques from semi-infinite constrained learning and manifold regularization. To do so, it shows that, under typical conditions, the problem of learning a Lipschitz continuous function on a manifold is equivalent to a dynamically weighted manifold regularization problem. This observation leads to a practical algorithm based on a weighted Laplacian penalty whose weights are adapted using stochastic gradient techniques. We prove that, under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct. Numerical examples illustrate the advantages of using this method to impose global smoothness on manifolds as opposed to imposing smoothness on average.
Abstract:There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms. Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such as healthcare. We argue that machine learning algorithms should be interpretable by design and that the language in which these interpretations are expressed should be domain- and task-dependent. Consequently, we base our model's prediction on a family of user-defined and task-specific binary functions of the data, each having a clear interpretation to the end-user. We then minimize the expected number of queries needed for accurate prediction on any given input. As the solution is generally intractable, following prior work, we choose the queries sequentially based on information gain. However, in contrast to previous work, we need not assume the queries are conditionally independent. Instead, we leverage a stochastic generative model (VAE) and an MCMC algorithm (Unadjusted Langevin) to select the most informative query about the input based on previous query-answers. This enables the online determination of a query chain of whatever depth is required to resolve prediction ambiguities. Finally, experiments on vision and NLP tasks demonstrate the efficacy of our approach and its superiority over post-hoc explanations.
Abstract:The principle of Maximal Coding Rate Reduction (MCR$^2$) has recently been proposed as a training objective for learning discriminative low-dimensional structures intrinsic to high-dimensional data to allow for more robust training than standard approaches, such as cross-entropy minimization. However, despite the advantages that have been shown for MCR$^2$ training, MCR$^2$ suffers from a significant computational cost due to the need to evaluate and differentiate a significant number of log-determinant terms that grows linearly with the number of classes. By taking advantage of variational forms of spectral functions of a matrix, we reformulate the MCR$^2$ objective to a form that can scale significantly without compromising training accuracy. Experiments in image classification demonstrate that our proposed formulation results in a significant speed up over optimizing the original MCR$^2$ objective directly and often results in higher quality learned representations. Further, our approach may be of independent interest in other models that require computation of log-determinant forms, such as in system identification or normalizing flow models.
Abstract:Robust subspace recovery (RSR) is a fundamental problem in robust representation learning. Here we focus on a recently proposed RSR method termed Dual Principal Component Pursuit (DPCP) approach, which aims to recover a basis of the orthogonal complement of the subspace and is amenable to handling subspaces of high relative dimension. Prior work has shown that DPCP can provably recover the correct subspace in the presence of outliers, as long as the true dimension of the subspace is known. We show that DPCP can provably solve RSR problems in the {\it unknown} subspace dimension regime, as long as orthogonality constraints -- adopted in previous DPCP formulations -- are relaxed and random initialization is used instead of spectral one. Namely, we propose a very simple algorithm based on running multiple instances of a projected sub-gradient descent method (PSGM), with each problem instance seeking to find one vector in the null space of the subspace. We theoretically prove that under mild conditions this approach will succeed with high probability. In particular, we show that 1) all of the problem instances will converge to a vector in the nullspace of the subspace and 2) the ensemble of problem instance solutions will be sufficiently diverse to fully span the nullspace of the subspace thus also revealing its true unknown codimension. We provide empirical results that corroborate our theoretical results and showcase the remarkable implicit rank regularization behavior of PSGM algorithm that allows us to perform RSR without being aware of the subspace dimension.