Abstract:Language model agents excel in long-session planning and reasoning, but existing benchmarks primarily focus on goal-oriented tasks with explicit objectives, neglecting creative adaptation in unfamiliar environments. To address this, we introduce EscapeBench, a benchmark suite of room escape game environments designed to challenge agents with creative reasoning, unconventional tool use, and iterative problem-solving to uncover implicit goals. Our results show that current LM models, despite employing working memory and Chain-of-Thought reasoning, achieve only 15% average progress without hints, highlighting their limitations in creativity. To bridge this gap, we propose EscapeAgent, a framework designed to enhance creative reasoning through Foresight (innovative tool use) and Reflection (identifying unsolved tasks). Experiments show that EscapeAgent can execute action chains over 1,000 steps while maintaining logical coherence. It navigates and completes games with up to 40% fewer steps and hints, performs robustly across varying difficulty levels, and achieves higher action success rates with more efficient and innovative puzzle-solving strategies. All the data and codes are released.
Abstract:This paper introduces Web-DRO, an unsupervised dense retrieval model, which clusters documents based on web structures and reweights the groups during contrastive training. Specifically, we first leverage web graph links and contrastively train an embedding model for clustering anchor-document pairs. Then we use Group Distributional Robust Optimization to reweight different clusters of anchor-document pairs, which guides the model to assign more weights to the group with higher contrastive loss and pay more attention to the worst case during training. Our experiments on MS MARCO and BEIR show that our model, Web-DRO, significantly improves the retrieval effectiveness in unsupervised scenarios. A comparison of clustering techniques shows that training on the web graph combining URL information reaches optimal performance on clustering. Further analysis confirms that group weights are stable and valid, indicating consistent model preferences as well as effective up-weighting of valuable groups and down-weighting of uninformative ones. The code of this paper can be obtained from https://github.com/OpenMatch/Web-DRO.