Abstract:In this paper, we present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting with three primary contributions. (1) Data: To gain insights into model behavior in "in-the-wild" conversational recommendation scenarios, we construct a new dataset of recommendation-related conversations by scraping a popular discussion website. This is the largest public real-world conversational recommendation dataset to date. (2) Evaluation: On the new dataset and two existing conversational recommendation datasets, we observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models. (3) Analysis: We propose various probing tasks to investigate the mechanisms behind the remarkable performance of large language models in conversational recommendation. We analyze both the large language models' behaviors and the characteristics of the datasets, providing a holistic understanding of the models' effectiveness, limitations and suggesting directions for the design of future conversational recommenders
Abstract:A novel deep learning architecture (XmasNet) based on convolutional neural networks was developed for the classification of prostate cancer lesions, using the 3D multiparametric MRI data provided by the PROSTATEx challenge. End-to-end training was performed for XmasNet, with data augmentation done through 3D rotation and slicing, in order to incorporate the 3D information of the lesion. XmasNet outperformed traditional machine learning models based on engineered features, for both train and test data. For the test data, XmasNet outperformed 69 methods from 33 participating groups and achieved the second highest AUC (0.84) in the PROSTATEx challenge. This study shows the great potential of deep learning for cancer imaging.