Abstract:In this work, we present FRTree planner, a novel robot navigation framework that leverages a tree structure of free regions, specifically designed for navigation in cluttered and unknown environments with narrow passages. The framework continuously incorporates real-time perceptive information to identify distinct navigation options and dynamically expands the tree toward explorable and traversable directions. This dynamically constructed tree incrementally encodes the geometric and topological information of the collision-free space, enabling efficient selection of the intermediate goals, navigating around dead-end situations, and avoidance of dynamic obstacles without a prior map. Crucially, our method performs a comprehensive analysis of the geometric relationship between free regions and the robot during online replanning. In particular, the planner assesses the accessibility of candidate passages based on the robot's geometries, facilitating the effective selection of the most viable intermediate goals through accessible narrow passages while minimizing unnecessary detours. By combining the free region information with a bi-level trajectory optimization tailored for robots with specific geometries, our approach generates robust and adaptable obstacle avoidance strategies in confined spaces. Through extensive simulations and real-world experiments, FRTree demonstrates its superiority over benchmark methods in generating safe, efficient motion plans through highly cluttered and unknown terrains with narrow gaps.
Abstract:Continuum robots are compact and flexible, making them suitable for use in the industries and in medical surgeries. Rapidly-exploring random trees (RRT) are a highly efficient path planning method, and its variant, S-RRT, can generate smooth feasible paths for the end-effector. By combining RRT with inverse instantaneous kinematics (IIK), complete motion planning for the continuum arm can be achieved. Due to the high degrees of freedom of continuum arms, the null space in IIK can be utilized for obstacle avoidance. In this work, we propose a novel approach that uses the S-RRT* algorithm to create paths for the continuum-rigid manipulator. By employing IIK and null space techniques, continuous joint configurations are generated that not only track the path but also enable obstacle avoidance. Simulation results demonstrate that our method effectively handles motion planning and obstacle avoidance while generating high-quality end-effector paths in complex environments. Furthermore, compared to similar IIK methods, our approach exhibits superior computation time.
Abstract:Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Our project page is in https://andycao1125.github.io/mamba_policy/.
Abstract:Natural gas demand is a crucial factor for predicting natural gas prices and thus has a direct influence on the power system. However, existing methods face challenges in assessing the impact of shocks, such as the outbreak of the Russian-Ukrainian war. In this context, we apply deep neural network-based Granger causality to identify important drivers of natural gas demand. Furthermore, the resulting dependencies are used to construct a counterfactual case without the outbreak of the war, providing a quantifiable estimate of the overall effect of the shock on various German energy sectors. The code and dataset are available at https://github.com/bonaldli/CausalEnergy.
Abstract:Text-rich images have significant and extensive value, deeply integrated into various aspects of human life. Notably, both visual cues and linguistic symbols in text-rich images play crucial roles in information transmission but are accompanied by diverse challenges. Therefore, the efficient and effective understanding of text-rich images is a crucial litmus test for the capability of Vision-Language Models. We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images. The significant design of StrucTexTv3 is presented in the following aspects: Firstly, we adopt a combination of an effective multi-scale reduced visual transformer and a multi-granularity token sampler (MG-Sampler) as a visual token generator, successfully solving the challenges of high-resolution input and complex representation learning for text-rich images. Secondly, we enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning, seamlessly integrating various text-oriented tasks into a unified framework. Thirdly, we have curated a comprehensive collection of high-quality text-rich images, abbreviated as TIM-30M, encompassing diverse scenarios like incidental scenes, office documents, web pages, and screenshots, thereby improving the robustness of our model. Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks. Among multimodal models with LLM decoder of approximately 1.8B parameters, it stands out as a leader, which also makes the deployment of edge devices feasible. In summary, the StrucTexTv3 model, featuring efficient structural design, outstanding performance, and broad adaptability, offers robust support for diverse intelligent application tasks involving text-rich images, thus exhibiting immense potential for widespread application.
Abstract:This paper presents a novel approach to improving autonomous vehicle control in environments lacking clear road markings by integrating a diffusion-based motion predictor within an Active Inference Framework (AIF). Using a simulated parking lot environment as a parallel to unmarked roads, we develop and test our model to predict and guide vehicle movements effectively. The diffusion-based motion predictor forecasts vehicle actions by leveraging probabilistic dynamics, while AIF aids in decision-making under uncertainty. Unlike traditional methods such as Model Predictive Control (MPC) and Reinforcement Learning (RL), our approach reduces computational demands and requires less extensive training, enhancing navigation safety and efficiency. Our results demonstrate the model's capability to navigate complex scenarios, marking significant progress in autonomous driving technology.
Abstract:Open-Vocabulary Detection (OVD) aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on known category data tend to assign higher confidence to trained categories and confuse novel categories with background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method that enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy that synthesizes additional noisy query-box pairs from open-world unknown objects to trains the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at https://github.com/xiaomoguhz/OV-DQUO
Abstract:In this work, we propose a trajectory optimization approach for robot navigation in cluttered 3D environments. We represent the robot's geometry as a semialgebraic set defined by polynomial inequalities such that robots with general shapes can be suitably characterized. To address the robot navigation task in obstacle-dense environments, we exploit the free space directly to construct a sequence of free regions, and allocate each waypoint on the trajectory to a specific region. Then, we incorporate a uniform scaling factor for each free region, and formulate a Sums-of-Squares (SOS) optimization problem that renders the containment relationship between the robot and the free space computationally tractable. The SOS optimization problem is further reformulated to a semidefinite program (SDP), and the collision-free constraints are shown to be equivalent to limiting the scaling factor along the entire trajectory. In this context, the robot at a specific configuration is tailored to stay within the free region. Next, to solve the trajectory optimization problem with the proposed safety constraints (which are implicitly dependent on the robot configurations), we derive the analytical solution to the gradient of the minimum scaling factor with respect to the robot configuration. As a result, this seamlessly facilitates the use of gradient-based methods in efficient solving of the trajectory optimization problem. Through a series of simulations and real-world experiments, the proposed trajectory optimization approach is validated in various challenging scenarios, and the results demonstrate its effectiveness in generating collision-free trajectories in dense and intricate environments populated with obstacles.
Abstract:This paper presents a novel reactive motion planning framework for navigating robots in unknown and cluttered 2D workspace. Typical existing methods are developed by enforcing the robot staying in free regions represented by the locally extracted ellipse or polygon. Instead, we navigate the robot in free space with an alternate starshaped decomposition, which is calculated directly from real-time sensor data. Additionally, a roadmap is constructed incrementally to maintain the connectivity information of the starshaped regions. Compared to the roadmap built upon connected polygons or ellipses in the conventional approaches, the concave starshaped region is better suited to capture the natural distribution of sensor data, so that the perception information can be fully exploited for robot navigation. In this sense, conservative and myopic behaviors are avoided with the proposed approach, and intricate obstacle configurations can be suitably accommodated in unknown and cluttered environments. Then, we design a heuristic exploration algorithm on the roadmap to determine the frontier points of the starshaped regions, from which short-term goals are selected to attract the robot towards the goal configuration. It is noteworthy that, a recovery mechanism is developed on the roadmap that is triggered once a non-extendable short-term goal is reached. This mechanism renders it possible to deal with dead-end situations that can be typically encountered in unknown and cluttered environments. Furthermore, safe and smooth motion within the starshaped regions is generated by employing the Dynamical System Modulation (DSM) approach on the constructed roadmap. Through comprehensive evaluation in both simulations and real-world experiments, the proposed method outperforms the benchmark methods in terms of success rate and traveling time.
Abstract:Given an image and a natural language expression as input, the goal of referring image segmentation is to segment the foreground masks of the entities referred by the expression. Existing methods mainly focus on interactive learning between vision and language to enhance the multi-modal representations for global context reasoning. However, predicting directly in pixel-level space can lead to collapsed positioning and poor segmentation results. Its main challenge lies in how to explicitly model entity localization, especially for non-salient entities. In this paper, we tackle this problem by executing a Collaborative Position Reasoning Network (CPRN) via the proposed novel Row-and-Column interactive (RoCo) and Guided Holistic interactive (Holi) modules. Specifically, RoCo aggregates the visual features into the row- and column-wise features corresponding two directional axes respectively. It offers a fine-grained matching behavior that perceives the associations between the linguistic features and two decoupled visual features to perform position reasoning over a hierarchical space. Holi integrates features of the two modalities by a cross-modal attention mechanism, which suppresses the irrelevant redundancy under the guide of positioning information from RoCo. Thus, with the incorporation of RoCo and Holi modules, CPRN captures the visual details of position reasoning so that the model can achieve more accurate segmentation. To our knowledge, this is the first work that explicitly focuses on position reasoning modeling. We also validate the proposed method on three evaluation datasets. It consistently outperforms existing state-of-the-art methods.