Abstract:This work presents ARD2, a framework that enables real-time through-wall surveillance using two aerial drones and an augmented reality (AR) device. ARD2 consists of two main steps: target direction estimation and contour reconstruction. In the first stage, ARD2 leverages geometric relationships between the drones, the user, and the target to project the target's direction onto the user's AR display. In the second stage, images from the drones are synthesized to reconstruct the target's contour, allowing the user to visualize the target behind walls. Experimental results demonstrate the system's accuracy in both direction estimation and contour reconstruction.
Abstract:Inertial Measurement Unit (IMU) sensors, including accelerometers, gyroscopes, and magnetometers, are used to estimate the orientation of mobile devices. However, indoor magnetic fields are often distorted, causing the magnetometer's readings to deviate from true north and resulting in inaccurate orientation estimates. Existing solutions either ignore magnetic distortion or avoid using the magnetometer when distortion is detected. In this paper, we develop MDR, a Magnetic Distortion Resistant orientation estimation system that fundamentally models and corrects magnetic distortion. MDR builds a database to record magnetic directions at different locations and uses it to correct orientation estimates affected by magnetic distortion. To avoid the overhead of database preparation, MDR adopts practical designs to automatically update the database in parallel with orientation estimation. Experiments on 27+ hours of arm motion data show that MDR outperforms the state-of-the-art method by 35.34%.
Abstract:This paper introduces Golden-Retriever, designed to efficiently navigate vast industrial knowledge bases, overcoming challenges in traditional LLM fine-tuning and RAG frameworks with domain-specific jargon and context interpretation. Golden-Retriever incorporates a reflection-based question augmentation step before document retrieval, which involves identifying jargon, clarifying its meaning based on context, and augmenting the question accordingly. Specifically, our method extracts and lists all jargon and abbreviations in the input question, determines the context against a pre-defined list, and queries a jargon dictionary for extended definitions and descriptions. This comprehensive augmentation ensures the RAG framework retrieves the most relevant documents by providing clear context and resolving ambiguities, significantly improving retrieval accuracy. Evaluations using three open-source LLMs on a domain-specific question-answer dataset demonstrate Golden-Retriever's superior performance, providing a robust solution for efficiently integrating and querying industrial knowledge bases.
Abstract:The rapid decline in groundwater around the world poses a significant challenge to sustainable agriculture. To address this issue, agricultural managed aquifer recharge (Ag-MAR) is proposed to recharge the aquifer by artificially flooding agricultural lands using surface water. Ag-MAR requires a carefully selected flooding schedule to avoid affecting the oxygen absorption of crop roots. However, current Ag-MAR scheduling does not take into account complex environmental factors such as weather and soil oxygen, resulting in crop damage and insufficient recharging amounts. This paper proposes MARLP, the first end-to-end data-driven control system for Ag-MAR. We first formulate Ag-MAR as an optimization problem. To that end, we analyze four-year in-field datasets, which reveal the multi-periodicity feature of the soil oxygen level trends and the opportunity to use external weather forecasts and flooding proposals as exogenous clues for soil oxygen prediction. Then, we design a two-stage forecasting framework. In the first stage, it extracts both the cross-variate dependency and the periodic patterns from historical data to conduct preliminary forecasting. In the second stage, it uses weather-soil and flooding-soil causality to facilitate an accurate prediction of soil oxygen levels. Finally, we conduct model predictive control (MPC) for Ag-MAR flooding. To address the challenge of large action spaces, we devise a heuristic planning module to reduce the number of flooding proposals to enable the search for optimal solutions. Real-world experiments show that MARLP reduces the oxygen deficit ratio by 86.8% while improving the recharging amount in unit time by 35.8%, compared with the previous four years.
Abstract:Recent research has shown the potential of Model-based Reinforcement Learning (MBRL) to enhance energy efficiency of Heating, Ventilation, and Air Conditioning (HVAC) systems. However, existing methods rely on black-box thermal dynamics models and stochastic optimizers, lacking reliability guarantees and posing risks to occupant health. In this work, we overcome the reliability bottleneck by redesigning HVAC controllers using decision trees extracted from existing thermal dynamics models and historical data. Our decision tree-based policies are deterministic, verifiable, interpretable, and more energy-efficient than current MBRL methods. First, we introduce a novel verification criterion for RL agents in HVAC control based on domain knowledge. Second, we develop a policy extraction procedure that produces a verifiable decision tree policy. We found that the high dimensionality of the thermal dynamics model input hinders the efficiency of policy extraction. To tackle the dimensionality challenge, we leverage importance sampling conditioned on historical data distributions, significantly improving policy extraction efficiency. Lastly, we present an offline verification algorithm that guarantees the reliability of a control policy. Extensive experiments show that our method saves 68.4% more energy and increases human comfort gain by 14.8% compared to the state-of-the-art method, in addition to an 1127x reduction in computation overhead. Our code and data are available at https://github.com/ryeii/Veri_HVAC
Abstract:Recent years have seen an emerging interest in the trustworthiness of machine learning-based agents in the wild, especially in robotics, to provide safety assurance for the industry. Obtaining behavioral guarantees for these agents remains an important problem. In this work, we focus on guaranteeing a model-based planning agent reaches a goal state within a specific future time step. We show that there exists a lower bound for the reward at the goal state, such that if the said reward is below that bound, it is impossible to obtain such a guarantee. By extension, we show how to enforce preferences over multiple goals.
Abstract:Agricultural irrigation is a significant contributor to freshwater consumption. However, the current irrigation systems used in the field are not efficient. They rely mainly on soil moisture sensors and the experience of growers, but do not account for future soil moisture loss. Predicting soil moisture loss is challenging because it is influenced by numerous factors, including soil texture, weather conditions, and plant characteristics. This paper proposes a solution to improve irrigation efficiency, which is called DRLIC. DRLIC is a sophisticated irrigation system that uses deep reinforcement learning (DRL) to optimize its performance. The system employs a neural network, known as the DRL control agent, which learns an optimal control policy that considers both the current soil moisture measurement and the future soil moisture loss. We introduce an irrigation reward function that enables our control agent to learn from previous experiences. However, there may be instances where the output of our DRL control agent is unsafe, such as irrigating too much or too little water. To avoid damaging the health of the plants, we implement a safety mechanism that employs a soil moisture predictor to estimate the performance of each action. If the predicted outcome is deemed unsafe, we perform a relatively-conservative action instead. To demonstrate the real-world application of our approach, we developed an irrigation system that comprises sprinklers, sensing and control nodes, and a wireless network. We evaluate the performance of DRLIC by deploying it in a testbed consisting of six almond trees. During a 15-day in-field experiment, we compared the water consumption of DRLIC with a widely-used irrigation scheme. Our results indicate that DRLIC outperformed the traditional irrigation method by achieving a water savings of up to 9.52%.
Abstract:In this paper, we take a holistic approach to deal with the tradeoffs between energy use and comfort in commercial buildings. We developed a system called OCTOPUS, which employs a novel deep reinforcement learning (DRL) framework that uses a data-driven approach to find the optimal control sequences of all building's subsystems, including HVAC, lighting, blind and window systems. The DRL architecture includes a novel reward function that allows the framework to explore the tradeoffs between energy use and users' comfort, while at the same time enabling the solution of the high-dimensional control problem due to the interactions of four different building subsystems. In order to cope with OCTOPUS's data training requirements, we argue that calibrated simulations that match the target building operational points are the vehicle to generate enough data to be able to train our DRL framework to find the control solution for the target building. In our work, we trained OCTOPUS with 10-year weather data and a building model that is implemented in the EnergyPlus building simulator, which was calibrated using data from a real production building. Through extensive simulations, we demonstrate that OCTOPUS can achieve 14.26% and 8.1% energy savings compared with the state-of-the-art rule-based method in a LEED Gold Certified building and the latest DRL-based method available in the literature respectively, while maintaining human comfort within a desired range.
Abstract:In this paper, we propose a single-agent Monte Carlo based reinforced feature selection (MCRFS) method, as well as two efficiency improvement strategies, i.e., early stopping (ES) strategy and reward-level interactive (RI) strategy. Feature selection is one of the most important technologies in data prepossessing, aiming to find the optimal feature subset for a given downstream machine learning task. Enormous research has been done to improve its effectiveness and efficiency. Recently, the multi-agent reinforced feature selection (MARFS) has achieved great success in improving the performance of feature selection. However, MARFS suffers from the heavy burden of computational cost, which greatly limits its application in real-world scenarios. In this paper, we propose an efficient reinforcement feature selection method, which uses one agent to traverse the whole feature set, and decides to select or not select each feature one by one. Specifically, we first develop one behavior policy and use it to traverse the feature set and generate training data. And then, we evaluate the target policy based on the training data and improve the target policy by Bellman equation. Besides, we conduct the importance sampling in an incremental way, and propose an early stopping strategy to improve the training efficiency by the removal of skew data. In the early stopping strategy, the behavior policy stops traversing with a probability inversely proportional to the importance sampling weight. In addition, we propose a reward-level interactive strategy to improve the training efficiency via reward-level external advice. Finally, we design extensive experiments on real-world data to demonstrate the superiority of the proposed method.
Abstract:Training deep learning models on mobile devices recently becomes possible, because of increasing computation power on mobile hardware and the advantages of enabling high user experiences. Most of the existing work on machine learning at mobile devices is focused on the inference of deep learning models (particularly convolutional neural network and recurrent neural network), but not training. The performance characterization of training deep learning models on mobile devices is largely unexplored, although understanding the performance characterization is critical for designing and implementing deep learning models on mobile devices. In this paper, we perform a variety of experiments on a representative mobile device (the NVIDIA TX2) to study the performance of training deep learning models. We introduce a benchmark suite and tools to study performance of training deep learning models on mobile devices, from the perspectives of memory consumption, hardware utilization, and power consumption. The tools can correlate performance results with fine-grained operations in deep learning models, providing capabilities to capture performance variance and problems at a fine granularity. We reveal interesting performance problems and opportunities, including under-utilization of heterogeneous hardware, large energy consumption of the memory, and high predictability of workload characterization. Based on the performance analysis, we suggest interesting research directions.