We present Generalizable Wireless Radiance Fields (GWRF), a framework for modeling wireless signal propagation at arbitrary 3D transmitter and receiver positions. Unlike previous methods that adapt vanilla Neural Radiance Fields (NeRF) from the optical to the wireless signal domain, requiring extensive per-scene training, GWRF generalizes effectively across scenes. First, a geometry-aware Transformer encoder-based wireless scene representation module incorporates information from geographically proximate transmitters to learn a generalizable wireless radiance field. Second, a neural-driven ray tracing algorithm operates on this field to automatically compute signal reception at the receiver. Experimental results demonstrate that GWRF outperforms existing methods on single scenes and achieves state-of-the-art performance on unseen scenes.