Abstract:Generative diffusion models (GDMs) have recently shown great success in synthesizing multimedia signals with high perceptual quality enabling highly efficient semantic communications in future wireless networks. In this paper, we develop an intent-aware generative semantic multicasting framework utilizing pre-trained diffusion models. In the proposed framework, the transmitter decomposes the source signal to multiple semantic classes based on the multi-user intent, i.e. each user is assumed to be interested in details of only a subset of the semantic classes. The transmitter then sends to each user only its intended classes, and multicasts a highly compressed semantic map to all users over shared wireless resources that allows them to locally synthesize the other classes, i.e. non-intended classes, utilizing pre-trained diffusion models. The signal retrieved at each user is thereby partially reconstructed and partially synthesized utilizing the received semantic map. This improves utilization of the wireless resources, with better preserving privacy of the non-intended classes. We design a communication/computation-aware scheme for per-class adaptation of the communication parameters, such as the transmission power and compression rate to minimize the total latency of retrieving signals at multiple receivers, tailored to the prevailing channel conditions as well as the users reconstruction/synthesis distortion/perception requirements. The simulation results demonstrate significantly reduced per-user latency compared with non-generative and intent-unaware multicasting benchmarks while maintaining high perceptual quality of the signals retrieved at the users.
Abstract:We consider collaborative inference at the wireless edge, where each client's model is trained independently on their local datasets. Clients are queried in parallel to make an accurate decision collaboratively. In addition to maximizing the inference accuracy, we also want to ensure the privacy of local models. To this end, we leverage the superposition property of the multiple access channel to implement bandwidth-efficient multi-user inference methods. Specifically, we propose different methods for ensemble and multi-view classification that exploit over-the-air computation. We show that these schemes perform better than their orthogonal counterparts with statistically significant differences while using fewer resources and providing privacy guarantees. We also provide experimental results verifying the benefits of the proposed over-the-air multi-user inference approach and perform an ablation study to demonstrate the effectiveness of our design choices. We share the source code of the framework publicly on Github to facilitate further research and reproducibility.
Abstract:In massive multiple-input multiple-output (MIMO) systems, how to reliably acquire downlink channel state information (CSI) with low overhead is challenging. In this work, by integrating the generative pre-trained Transformer (GPT) with federated-tuning, we propose a CSI-GPT approach to realize efficient downlink CSI acquisition. Specifically, we first propose a Swin Transformer-based channel acquisition network (SWTCAN) to acquire downlink CSI, where pilot signals, downlink channel estimation, and uplink CSI feedback are jointly designed. Furthermore, to solve the problem of insufficient training data, we propose a variational auto-encoder-based channel sample generator (VAE-CSG), which can generate sufficient CSI samples based on a limited number of high-quality CSI data obtained from the current cell. The CSI dataset generated from VAE-CSG will be used for pre-training SWTCAN. To fine-tune the pre-trained SWTCAN for improved performance, we propose an online federated-tuning method, where only a small amount of SWTCAN parameters are unfrozen and updated using over-the-air computation, avoiding the high communication overhead caused by aggregating the complete CSI samples from user equipment (UEs) to the BS for centralized fine-tuning. Simulation results verify the advantages of the proposed SWTCAN and the communication efficiency of the proposed federated-tuning method.
Abstract:Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to the federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources. To support further research and ensure reproducibility, we have made our code available at https://github.com/liqiao19/MD-AirComp.
Abstract:Generative foundation AI models have recently shown great success in synthesizing natural signals with high perceptual quality using only textual prompts and conditioning signals to guide the generation process. This enables semantic communications at extremely low data rates in future wireless networks. In this paper, we develop a latency-aware semantic communications framework with pre-trained generative models. The transmitter performs multi-modal semantic decomposition on the input signal and transmits each semantic stream with the appropriate coding and communication schemes based on the intent. For the prompt, we adopt a re-transmission-based scheme to ensure reliable transmission, and for the other semantic modalities we use an adaptive modulation/coding scheme to achieve robustness to the changing wireless channel. Furthermore, we design a semantic and latency-aware scheme to allocate transmission power to different semantic modalities based on their importance subjected to semantic quality constraints. At the receiver, a pre-trained generative model synthesizes a high fidelity signal using the received multi-stream semantics. Simulation results demonstrate ultra-low-rate, low-latency, and channel-adaptive semantic communications.
Abstract:The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.
Abstract:This paper proposes a grant-free massive access scheme based on the millimeter wave (mmWave) extra-large-scale multiple-input multiple-output (XL-MIMO) to support massive Internet-of-Things (IoT) devices with low latency, high data rate, and high localization accuracy in the upcoming sixth-generation (6G) networks. The XL-MIMO consists of multiple antenna subarrays that are widely spaced over the service area to ensure line-of-sight (LoS) transmissions. First, we establish the XL-MIMO-based massive access model considering the near-field spatial non-stationary (SNS) property. Then, by exploiting the block sparsity of subarrays and the SNS property, we propose a structured block orthogonal matching pursuit algorithm for efficient active user detection (AUD) and channel estimation (CE). Furthermore, different sensing matrices are applied in different pilot subcarriers for exploiting the diversity gains. Additionally, a multi-subarray collaborative localization algorithm is designed for localization. In particular, the angle of arrival (AoA) and time difference of arrival (TDoA) of the LoS links between active users and related subarrays are extracted from the estimated XL-MIMO channels, and then the coordinates of active users are acquired by jointly utilizing the AoAs and TDoAs. Simulation results show that the proposed algorithms outperform existing algorithms in terms of AUD and CE performance and can achieve centimeter-level localization accuracy.
Abstract:Over-the-air computation (OAC) is a promising technique to achieve fast model aggregation across multiple devices in federated edge learning (FEEL). In addition to the analog schemes, one-bit digital aggregation (OBDA) scheme was proposed to adapt OAC to modern digital wireless systems. However, one-bit quantization in OBDA can result in a serious information loss and slower convergence of FEEL. To overcome this limitation, this paper proposes an unsourced massive access (UMA)-based generalized digital OAC (GD-OAC) scheme. Specifically, at the transmitter, all the devices share the same non-orthogonal UMA codebook for uplink transmission. The local model update of each device is quantized based on the same quantization codebook. Then, each device transmits a sequence selected from the UMA codebook based on the quantized elements of its model update. At the receiver, we propose an approximate message passing-based algorithm for efficient UMA detection and model aggregation. Simulation results show that the proposed GD-OAC scheme significantly accelerates the FEEL convergences compared with the state-of-the-art OBDA scheme while using the same uplink communication resources.
Abstract:Grant-free non-coherent index-modulation (NC-IM) has been recently considered as an efficient massive access scheme for enabling cost- and energy-limited Internet-of-Things (IoT) devices that transmit small data packets. This paper investigates the grant-free NC-IM scheme combined with orthogonal frequency division multiplexing for applicant to unmanned aerial vehicle (UAV)-based massive IoT access. Specifically, each device is assigned a unique non-orthogonal signature sequence codebook. Each active device transmits one of its signature sequences in the given time-frequency resources, by modulating the information in the index of the transmitted signature sequence. For small-scale multiple-input multiple-output (MIMO) deployed at the UAV-based aerial base station (BS), by jointly exploiting the space-time-frequency domain device activity, we propose a computationally efficient space-time-frequency joint activity and blind information detection (JABID) algorithm with significantly improved detection performance. Furthermore, for large-scale MIMO deployed at the aerial BS, by leveraging the sparsity of the virtual angular-domain channels, we propose an angular-domain based JABID algorithm for improving the system performance with reduced access latency. In addition, for the case of high mobility IoT devices and/or UAVs, we introduce a time-frequency spread transmission (TFST) strategy for the proposed JABID algorithms to combat doubly-selective fading channels. Finally, extensive simulation results are illustrated to verify the superiority of the proposed algorithms and the TFST strategy over known state-of-the-art algorithms.
Abstract:The massive machine-type communications (mMTC) paradigm based on media modulation in conjunction with massive MIMO base stations (BSs) is emerging as a viable solution to support the massive connectivity for the future Internet-of-Things, in which the inherent massive access at the BSs poses significant challenges for device activity and data detection (DADD). This paper considers the DADD problem for both uncoded and coded media modulation based mMTC with a slotted access frame structure, where the device activity remains unchanged within one frame. Specifically, due to the slotted access frame structure and the adopted media modulated symbols, the access signals exhibit a doubly structured sparsity in both the time domain and the modulation domain. Inspired by this, a doubly structured approximate message passing (DS-AMP) algorithm is proposed for reliable DADD in the uncoded case. Also, we derive the state evolution of the DS-AMP algorithm to theoretically characterize its performance. As for the coded case, we develop a bit-interleaved coded media modulation scheme and propose an iterative DS-AMP (IDS-AMP) algorithm based on successive inference cancellation (SIC), where the signal components associated with the detected active devices are successively subtracted to improve the data decoding performance. In addition, the channel estimation problem for media modulation based mMTC is discussed and an efficient data-aided channel state information (CSI) update strategy is developed to reduce the training overhead in block fading channels. Finally, simulation results and computational complexity analysis verify the superiority of the proposed algorithms in both uncoded and coded cases. Also, our results verify the validity of the proposed data-aided CSI update strategy.