Abstract:Large Language Models (LLMs) have transformed natural language processing, yet they still struggle with direct text editing tasks that demand precise, context-aware modifications. While models like ChatGPT excel in text generation and analysis, their editing abilities often fall short, addressing only superficial issues rather than deeper structural or logical inconsistencies. In this work, we introduce a dual approach to enhance LLMs editing performance. First, we present InstrEditBench, a high-quality benchmark dataset comprising over 20,000 structured editing tasks spanning Wiki articles, LaTeX documents, code, and database Domain-specific Languages (DSL). InstrEditBench is generated using an innovative automated workflow that accurately identifies and evaluates targeted edits, ensuring that modifications adhere strictly to specified instructions without altering unrelated content. Second, we propose FineEdit, a specialized model trained on this curated benchmark. Experimental results demonstrate that FineEdit achieves significant improvements around {10\%} compared with Gemini on direct editing tasks, convincingly validating its effectiveness.
Abstract:Despite significant advancements in traditional syntactic communications based on Shannon's theory, these methods struggle to meet the requirements of 6G immersive communications, especially under challenging transmission conditions. With the development of generative artificial intelligence (GenAI), progress has been made in reconstructing videos using high-level semantic information. In this paper, we propose a scalable generative video semantic communication framework that extracts and transmits semantic information to achieve high-quality video reconstruction. Specifically, at the transmitter, description and other condition signals (e.g., first frame, sketches, etc.) are extracted from the source video, functioning as text and structural semantics, respectively. At the receiver, the diffusion-based GenAI large models are utilized to fuse the semantics of the multiple modalities for reconstructing the video. Simulation results demonstrate that, at an ultra-low channel bandwidth ratio (CBR), our scheme effectively captures semantic information to reconstruct videos aligned with human perception under different signal-to-noise ratios. Notably, the proposed ``First Frame+Desc." scheme consistently achieves CLIP score exceeding 0.92 at CBR = 0.0057 for SNR > 0 dB. This demonstrates its robust performance even under low SNR conditions.
Abstract:Neural language representation models such as GPT, pre-trained on large-scale corpora, can effectively capture rich semantic patterns from plain text and be fine-tuned to consistently improve natural language generation performance. However, existing pre-trained language models used to generate lyrics rarely consider rhyme information, which is crucial in lyrics. Using a pre-trained model directly results in poor performance. To enhance the rhyming quality of generated lyrics, we incorporate integrated rhyme information into our model, thereby improving lyric generation performance.
Abstract:Automatic code generation has been a longstanding research topic. With the advancement of general-purpose large language models (LLMs), the ability to code stands out as one important measure to the model's reasoning performance. Usually, a two-stage training paradigm is implemented to obtain a Code LLM, namely the pretraining and the fine-tuning. Within the fine-tuning, supervised fine-tuning (SFT), and reinforcement learning (RL) are often used to improve the model's zero-shot ability. A large number of work has been conducted to improve the model's performance on code-related benchmarks with either modifications to the algorithm or refinement of the dataset. However, we still lack a deep insight into the correlation between SFT and RL. For instance, what kind of dataset should be used to ensure generalization, or what if we abandon the SFT phase in fine-tuning. In this work, we make an attempt to understand the correlation between SFT and RL. To facilitate our research, we manually craft 100 basis python functions, called atomic functions, and then a synthesizing pipeline is deployed to create a large number of synthetic functions on top of the atomic ones. In this manner, we ensure that the train and test sets remain distinct, preventing data contamination. Through comprehensive ablation study, we find: (1) Both atomic and synthetic functions are indispensable for SFT's generalization, and only a handful of synthetic functions are adequate; (2) Through RL, the SFT's generalization to target domain can be greatly enhanced, even with the same training prompts; (3) Training RL from scratch can alleviate the over-fitting issue introduced in the SFT phase.
Abstract:Large Language Models (LLMs) have shown excellent performance in language understanding, text generation, code synthesis, and many other tasks, while they still struggle in complex multi-step reasoning problems, such as mathematical reasoning. In this paper, through a newly proposed arithmetical puzzle problem, we show that the model can perform well on multi-step reasoning tasks via fine-tuning on high-quality synthetic data. Experimental results with the open-llama-3B model on three different test datasets show that not only the model can reach a zero-shot pass@1 at 0.44 on the in-domain dataset, it also demonstrates certain generalization capabilities on the out-of-domain datasets. Specifically, this paper has designed two out-of-domain datasets in the form of extending the numerical range and the composing components of the arithmetical puzzle problem separately. The fine-tuned models have shown encouraging performance on these two far more difficult tasks with the zero-shot pass@1 at 0.33 and 0.35, respectively.
Abstract:Recent breakthroughs in AI are poised to fundamentally enhance our study and understanding of healthcare. The development of an integrated many-to-many framework that leverages multiple data modality inputs for the analytical modeling of multiple medical tasks, is critical for a unified understanding of modern medicine. In this work, we introduce M3H, an explainable Multimodal Multitask Machine Learning for Healthcare framework that consolidates learning from diverse multimodal inputs across a broad spectrum of medical task categories and machine learning problem classes. The modular design of the framework ensures its generalizable data processing, task definition, and rapid model prototyping, applicable to both clinical and operational healthcare settings. We evaluate the M3H framework by validating models trained from four modalities (tabular, time-series, language, and vision) on 41 medical tasks across 4 machine learning problem classes. Our results demonstrate that M3H consistently produces multitask models that outperform canonical single-task models (by 1.1- 37.2%) across 37 disease diagnoses from 16 medical departments, three hospital operation forecasts, and one patient phenotyping task: spanning ML problem classes of supervised binary classification, multiclass classification, regression, and clustering. Additionally, the framework introduces a novel attention mechanism to balance self-exploitation (focus on learning source task), and cross-exploration (encourage learning from other tasks). Furthermore, M3H provides explainability insights on how joint learning of additional tasks impacts the learning of source task using a proposed TIM score, shedding light into the dynamics of task interdependencies. Its adaptable architecture facilitates the customization and integration, establishing it as a robust and scalable candidate solution for future AI-driven healthcare systems.
Abstract:Retraining machine learning models remains an important task for real-world machine learning model deployment. Existing methods focus largely on greedy approaches to find the best-performing model without considering the stability of trained model structures across different retraining evolutions. In this study, we develop a mixed integer optimization algorithm that holistically considers the problem of retraining machine learning models across different data batch updates. Our method focuses on retaining consistent analytical insights - which is important to model interpretability, ease of implementation, and fostering trust with users - by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world production case study. Finally, important analytical insights, as demonstrated using SHAP feature importance, are shown to be consistent across retraining iterations.
Abstract:Feature-fusion networks with duplex encoders have proven to be an effective technique to solve the freespace detection problem. However, despite the compelling results achieved by previous research efforts, the exploration of adequate and discriminative heterogeneous feature fusion, as well as the development of fallibility-aware loss functions remains relatively scarce. This paper makes several significant contributions to address these limitations: (1) It presents a novel heterogeneous feature fusion block, comprising a holistic attention module, a heterogeneous feature contrast descriptor, and an affinity-weighted feature recalibrator, enabling a more in-depth exploitation of the inherent characteristics of the extracted features, (2) it incorporates both inter-scale and intra-scale skip connections into the decoder architecture while eliminating redundant ones, leading to both improved accuracy and computational efficiency, and (3) it introduces two fallibility-aware loss functions that separately focus on semantic-transition and depth-inconsistent regions, collectively contributing to greater supervision during model training. Our proposed heterogeneous feature fusion network (SNE-RoadSegV2), which incorporates all these innovative components, demonstrates superior performance in comparison to all other freespace detection algorithms across multiple public datasets. Notably, it ranks the 1st on the official KITTI Road benchmark.
Abstract:We propose a new formulation of robust regression by integrating all realizations of the uncertainty set and taking an averaged approach to obtain the optimal solution for the ordinary least-squared regression problem. We show that this formulation surprisingly recovers ridge regression and establishes the missing link between robust optimization and the mean squared error approaches for existing regression problems. We first prove the equivalence for four uncertainty sets: ellipsoidal, box, diamond, and budget, and provide closed-form formulations of the penalty term as a function of the sample size, feature size, as well as perturbation protection strength. We then show in synthetic datasets with different levels of perturbations, a consistent improvement of the averaged formulation over the existing worst-case formulation in out-of-sample performance. Importantly, as the perturbation level increases, the improvement increases, confirming our method's advantage in high-noise environments. We report similar improvements in the out-of-sample datasets in real-world regression problems obtained from UCI datasets.
Abstract:Processing and analyzing tabular data in a productive and efficient way is essential for building successful applications of machine learning in fields such as healthcare. However, the lack of a unified framework for representing and standardizing tabular information poses a significant challenge to researchers and professionals alike. In this work, we present TabText, a methodology that leverages the unstructured data format of language to encode tabular data from different table structures and time periods efficiently and accurately. We show using two healthcare datasets and four prediction tasks that features extracted via TabText outperform those extracted with traditional processing methods by 2-5%. Furthermore, we analyze the sensitivity of our framework against different choices for sentence representations of missing values, meta information and language descriptiveness, and provide insights into winning strategies that improve performance.