



Abstract:Hospitals lack automated systems to harness the growing volume of heterogeneous clinical and operational data to effectively forecast critical events. Early identification of patients at risk for deterioration is essential not only for patient care quality monitoring but also for physician care management. However, translating varied data streams into accurate and interpretable risk assessments poses significant challenges due to inconsistent data formats. We develop a multimodal machine learning framework, the Early Warning Index (EWI), to predict the aggregate risk of ICU admission, emergency response team dispatch, and mortality. Key to EWI's design is a human-in-the-loop process: clinicians help determine alert thresholds and interpret model outputs, which are enhanced by explainable outputs using Shapley Additive exPlanations (SHAP) to highlight clinical and operational factors (e.g., scheduled surgeries, ward census) driving each patient's risk. We deploy EWI in a hospital dashboard that stratifies patients into three risk tiers. Using a dataset of 18,633 unique patients at a large U.S. hospital, our approach automatically extracts features from both structured and unstructured electronic health record (EHR) data and achieves C-statistics of 0.796. It is currently used as a triage tool for proactively managing at-risk patients. The proposed approach saves physicians valuable time by automatically sorting patients of varying risk levels, allowing them to concentrate on patient care rather than sifting through complex EHR data. By further pinpointing specific risk drivers, the proposed model provides data-informed adjustments to caregiver scheduling and allocation of critical resources. As a result, clinicians and administrators can avert downstream complications, including costly procedures or high readmission rates and improve overall patient flow.
Abstract:Background. Treatment selection for low to intermediate risk patients with severe aortic stenosis between surgical (SAVR) and transcatheter (TAVR) aortic valve replacement remains variable in clinical practice, driven by patient heterogeneity and institutional preferences. While existing models predict postprocedural risk, there is a lack of interpretable, individualized treatment recommendations that directly optimize long-term outcomes. Methods. We introduce an interpretable prescriptive framework that integrates prognostic matching, counterfactual outcome modeling, and an Optimal Policy Tree (OPT) to recommend the treatment minimizing expected 5-year mortality. Using data from Hartford Hospital and St. Vincent's Hospital, we emulate randomization via prognostic matching and sample weighting and estimate counterfactual mortality under both SAVR and TAVR. The policy model, trained on these counterfactual predictions, partitions patients into clinically coherent subgroups and prescribes the treatment associated with lower estimated risk. Findings. If the OPT prescriptions are applied, counterfactual evaluation showed an estimated reduction in 5-year mortality of 20.3\% in Hartford and 13.8\% in St. Vincent's relative to real-life prescriptions, showing promising generalizability to unseen data from a different institution. The learned decision boundaries aligned with real-world outcomes and clinical observations. Interpretation. Our interpretable prescriptive framework is, to the best of our knowledge, the first to provide transparent, data-driven recommendations for TAVR versus SAVR that improve estimated long-term outcomes both in an internal and external cohort, while remaining clinically grounded and contributing toward a more systematic and evidence-based approach to precision medicine in structural heart disease.
Abstract:Background. Subdural hematoma (SDH) is a common neurosurgical emergency, with increasing incidence in aging populations. Rapid and accurate identification is essential to guide timely intervention, yet existing automated tools focus primarily on detection and provide limited interpretability or spatial localization. There remains a need for transparent, high-performing systems that integrate multimodal clinical and imaging information to support real-time decision-making. Methods. We developed a multimodal deep-learning framework that integrates structured clinical variables, a 3D convolutional neural network trained on CT volumes, and a transformer-enhanced 2D segmentation model for SDH detection and localization. Using 25,315 head CT studies from Hartford HealthCare (2015--2024), of which 3,774 (14.9\%) contained clinician-confirmed SDH, tabular models were trained on demographics, comorbidities, medications, and laboratory results. Imaging models were trained to detect SDH and generate voxel-level probability maps. A greedy ensemble strategy combined complementary predictors. Findings. Clinical variables alone provided modest discriminatory power (AUC 0.75). Convolutional models trained on CT volumes and segmentation-derived maps achieved substantially higher accuracy (AUCs 0.922 and 0.926). The multimodal ensemble integrating all components achieved the best overall performance (AUC 0.9407; 95\% CI, 0.930--0.951) and produced anatomically meaningful localization maps consistent with known SDH patterns. Interpretation. This multimodal, interpretable framework provides rapid and accurate SDH detection and localization, achieving high detection performance and offering transparent, anatomically grounded outputs. Integration into radiology workflows could streamline triage, reduce time to intervention, and improve consistency in SDH management.
Abstract:Transcatheter Aortic Valve Replacement (TAVR) has emerged as a minimally invasive treatment option for patients with severe aortic stenosis, a life-threatening cardiovascular condition. Multiple transcatheter heart valves (THV) have been approved for use in TAVR, but current guidelines regarding valve type prescription remain an active topic of debate. We propose a data-driven clinical support tool to identify the optimal valve type with the objective of minimizing the risk of permanent pacemaker implantation (PPI), a predominant postoperative complication. We synthesize a novel dataset that combines U.S. and Greek patient populations and integrates three distinct data sources (patient demographics, computed tomography scans, echocardiograms) while harmonizing differences in each country's record system. We introduce a leaf-level analysis to leverage population heterogeneity and avoid benchmarking against uncertain counterfactual risk estimates. The final prescriptive model shows a reduction in PPI rates of 26% and 16% compared with the current standard of care in our internal U.S. population and external Greek validation cohort, respectively. To the best of our knowledge, this work represents the first unified, personalized prescription strategy for THV selection in TAVR.
Abstract:Random Forests (RF) and Extreme Gradient Boosting (XGBoost) are two of the most widely used and highly performing classification and regression models. They aggregate equally weighted CART trees, generated randomly in RF or sequentially in XGBoost. In this paper, we propose Adaptive Forests (AF), a novel approach that adaptively selects the weights of the underlying CART models. AF combines (a) the Optimal Predictive-Policy Trees (OP2T) framework to prescribe tailored, input-dependent unequal weights to trees and (b) Mixed Integer Optimization (MIO) to refine weight candidates dynamically, enhancing overall performance. We demonstrate that AF consistently outperforms RF, XGBoost, and other weighted RF in binary and multi-class classification problems over 20+ real-world datasets.
Abstract:We address the problem of policy selection in contextual stochastic optimization (CSO), where covariates are available as contextual information and decisions must satisfy hard feasibility constraints. In many CSO settings, multiple candidate policies--arising from different modeling paradigms--exhibit heterogeneous performance across the covariate space, with no single policy uniformly dominating. We propose Prescribe-then-Select (PS), a modular framework that first constructs a library of feasible candidate policies and then learns a meta-policy to select the best policy for the observed covariates. We implement the meta-policy using ensembles of Optimal Policy Trees trained via cross-validation on the training set, making policy choice entirely data-driven. Across two benchmark CSO problems--single-stage newsvendor and two-stage shipment planning--PS consistently outperforms the best single policy in heterogeneous regimes of the covariate space and converges to the dominant policy when such heterogeneity is absent. All the code to reproduce the results can be found at https://anonymous.4open.science/r/Prescribe-then-Select-TMLR.




Abstract:Existing approaches of prescriptive analytics -- where inputs of an optimization model can be predicted by leveraging covariates in a machine learning model -- often attempt to optimize the mean value of an uncertain objective. However, when applied to uncertain constraints, these methods rarely work because satisfying a crucial constraint in expectation may result in a high probability of violation. To remedy this, we leverage robust optimization to protect a constraint against the uncertainty of a machine learning model's output. To do so, we design an uncertainty set based on the model's loss function. Intuitively, this approach attempts to minimize the uncertainty around a prediction. Extending guarantees from the robust optimization literature, we derive strong guarantees on the probability of violation. On synthetic computational experiments, our method requires uncertainty sets with radii up to one order of magnitude smaller than those of other approaches.




Abstract:We propose a machine learning approach to the optimal control of fluid restless multi-armed bandits (FRMABs) with state equations that are either affine or quadratic in the state variables. By deriving fundamental properties of FRMAB problems, we design an efficient machine learning based algorithm. Using this algorithm, we solve multiple instances with varying initial states to generate a comprehensive training set. We then learn a state feedback policy using Optimal Classification Trees with hyperplane splits (OCT-H). We test our approach on machine maintenance, epidemic control and fisheries control problems. Our method yields high-quality state feedback policies and achieves a speed-up of up to 26 million times compared to a direct numerical algorithm for fluid problems.




Abstract:We introduce a multimodal deep learning framework, Prescriptive Neural Networks (PNNs), that combines ideas from optimization and machine learning, and is, to the best of our knowledge, the first prescriptive method to handle multimodal data. The PNN is a feedforward neural network trained on embeddings to output an outcome-optimizing prescription. In two real-world multimodal datasets, we demonstrate that PNNs prescribe treatments that are able to significantly improve estimated outcomes in transcatheter aortic valve replacement (TAVR) procedures by reducing estimated postoperative complication rates by 32% and in liver trauma injuries by reducing estimated mortality rates by over 40%. In four real-world, unimodal tabular datasets, we demonstrate that PNNs outperform or perform comparably to other well-known, state-of-the-art prescriptive models; importantly, on tabular datasets, we also recover interpretability through knowledge distillation, fitting interpretable Optimal Classification Tree models onto the PNN prescriptions as classification targets, which is critical for many real-world applications. Finally, we demonstrate that our multimodal PNN models achieve stability across randomized data splits comparable to other prescriptive methods and produce realistic prescriptions across the different datasets.




Abstract:Decision Trees have remained a popular machine learning method for tabular datasets, mainly due to their interpretability. However, they lack the expressiveness needed to handle highly nonlinear or unstructured datasets. Motivated by recent advances in tree-based machine learning (ML) techniques and first-order optimization methods, we introduce Generalized Soft Trees (GSTs), which extend soft decision trees (STs) and are capable of processing images directly. We demonstrate their advantages with respect to tractability, performance, and interpretability. We develop a tractable approach to growing GSTs, given by the DeepTree algorithm, which, in addition to new regularization terms, produces high-quality models with far fewer nodes and greater interpretability than traditional soft trees. We test the performance of our GSTs on benchmark tabular and image datasets, including MIMIC-IV, MNIST, Fashion MNIST, CIFAR-10 and Celeb-A. We show that our approach outperforms other popular tree methods (CART, Random Forests, XGBoost) in almost all of the datasets, with Convolutional Trees having a significant edge in the hardest CIFAR-10 and Fashion MNIST datasets. Finally, we explore the interpretability of our GSTs and find that even the most complex GSTs are considerably more interpretable than deep neural networks. Overall, our approach of Generalized Soft Trees provides a tractable method that is high-performing on (un)structured datasets and preserves interpretability more than traditional deep learning methods.