Abstract:Retraining machine learning models remains an important task for real-world machine learning model deployment. Existing methods focus largely on greedy approaches to find the best-performing model without considering the stability of trained model structures across different retraining evolutions. In this study, we develop a mixed integer optimization algorithm that holistically considers the problem of retraining machine learning models across different data batch updates. Our method focuses on retaining consistent analytical insights - which is important to model interpretability, ease of implementation, and fostering trust with users - by using custom-defined distance metrics that can be directly incorporated into the optimization problem. Importantly, our method shows stronger stability than greedily trained models with a small, controllable sacrifice in model performance in a real-world production case study. Finally, important analytical insights, as demonstrated using SHAP feature importance, are shown to be consistent across retraining iterations.
Abstract:In this paper, we formulate the multi-agent graph bandit problem as a multi-agent extension of the graph bandit problem introduced by Zhang, Johansson, and Li [CISS 57, 1-6 (2023)]. In our formulation, $N$ cooperative agents travel on a connected graph $G$ with $K$ nodes. Upon arrival at each node, agents observe a random reward drawn from a node-dependent probability distribution. The reward of the system is modeled as a weighted sum of the rewards the agents observe, where the weights capture the decreasing marginal reward associated with multiple agents sampling the same node at the same time. We propose an Upper Confidence Bound (UCB)-based learning algorithm, Multi-G-UCB, and prove that its expected regret over $T$ steps is bounded by $O(N\log(T)[\sqrt{KT} + DK])$, where $D$ is the diameter of graph $G$. Lastly, we numerically test our algorithm by comparing it to alternative methods.