Abstract:Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including altered voice production in the early stages. Early diagnosis is crucial not only to improve PD patients' quality of life but also to enhance the efficacy of potential disease-modifying therapies during early neurodegeneration, a window often missed by current diagnostic tools. In this paper, we propose a more generalizable approach to PD recognition through domain adaptation and self-supervised learning. We demonstrate the generalization capabilities of the proposed approach across diverse datasets in different languages. Our approach leverages HuBERT, a large deep neural network originally trained for speech recognition and further trains it on unlabeled speech data from a population that is similar to the target group, i.e., the elderly, in a self-supervised manner. The model is then fine-tuned and adapted for use across different datasets in multiple languages, including English, Italian, and Spanish. Evaluations on four publicly available PD datasets demonstrate the model's efficacy, achieving an average specificity of 92.1% and an average sensitivity of 91.2%. This method offers objective and consistent evaluations across large populations, addressing the variability inherent in human assessments and providing a non-invasive, cost-effective and accessible diagnostic option.
Abstract:The performance of modern wireless communication systems is typically limited by interference. The impact of interference can be even more severe in ultra-reliable and low-latency communication (URLLC) use cases. A powerful tool for managing interference is rate splitting multiple access (RSMA), which encompasses many multiple-access technologies like non-orthogonal multiple access (NOMA), spatial division multiple access (SDMA), and broadcasting. Another effective technology to enhance the performance of URLLC systems and mitigate interference is constituted by reconfigurable intelligent surfaces (RISs). This paper develops RSMA schemes for multi-user multiple-input multiple-output (MIMO) RIS-aided broadcast channels (BCs) based on finite block length (FBL) coding. We show that RSMA and RISs can substantially improve the spectral efficiency (SE) and energy efficiency (EE) of MIMO RIS-aided URLLC systems. Additionally, the gain of employing RSMA and RISs noticeably increases when the reliability and latency constraints are more stringent. Furthermore, RISs impact RSMA differently, depending on the user load. If the system is underloaded, RISs are able to manage the interference sufficiently well, making the gains of RSMA small. However, when the user load is high, RISs and RSMA become synergetic.
Abstract:The challenges in dense ultra-reliable low-latency communication networks to deliver the required service to multiple devices are addressed by three main technologies: multiple antennas at the base station (MISO), rate splitting multiple access (RSMA) with private and common message encoding, and simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS). Careful resource allocation, encompassing beamforming and RIS optimization, is required to exploit the synergy between the three. We propose an alternating optimization-based algorithm, relying on minorization-maximization. Numerical results show that the achievable second-order max-min rates of the proposed scheme outperform the baselines significantly. MISO, RSMA, and STAR-RIS all contribute to enabling ultra-reliable low-latency communication (URLLC).
Abstract:We analyze the finite-block-length rate region of wireless systems aided by reconfigurable intelligent surfaces (RISs), employing treating interference as noise. We consider three nearly passive RIS architectures, including locally passive (LP) diagonal (D), globally passive (GP) D, and GP beyond diagonal (BD) RISs. In a GP RIS, the power constraint is applied globally to the whole surface, while some elements may amplify the incident signal locally. The considered RIS architectures provide substantial performance gains compared with systems operating without RIS. GP BD-RIS outperforms, at the price of increasing the complexity, LP and GP D-RIS as it enlarges the feasible set of allowed solutions. However, the gain provided by BD-RIS decreases with the number of RIS elements. Additionally, deploying RISs provides higher gains as the reliability/latency requirement becomes more stringent.
Abstract:In this paper, we develop energy-efficient schemes for multi-user multiple-input single-output (MISO) broadcast channels (BCs), assisted by reconfigurable intelligent surfaces (RISs). To this end, we consider three architectures of RIS: locally passive diagonal (LP-D), globally passive diagonal (GP-D), and globally passive beyond diagonal (GP-BD). In a globally passive RIS, the power of the output signal of the RIS is not greater than its input power, but some RIS elements can amplify the signal. In a locally passive RIS, every element cannot amplify the incident signal. We show that these RIS architectures can substantially improve energy efficiency (EE) if the static power of the RIS elements is not too high. Moreover, GP-BD RIS, which has a higher complexity and static power than LP-D RIS and GP-D RIS, provides better spectral efficiency, but its EE performance highly depends on the static power consumption and may be worse than its diagonal counterparts.
Abstract:This paper addresses the problem of maximizing the capacity of a multiple-input multiple-output (MIMO) link assisted by a beyond-diagonal reconfigurable intelligent surface (BD-RIS). We maximize the capacity by alternately optimizing the transmit covariance matrix, and the BD-RIS scattering matrix, which, according to network theory, should be unitary and symmetric. These constraints make the optimization of BD-RIS more challenging than that of diagonal RIS. To find a stationary point of the capacity we maximize a sequence of quadratic problems in the manifold of unitary matrices. This leads to an efficient algorithm that always improves the capacity obtained by a diagonal RIS. Through simulation examples, we study the capacity improvement provided by a passive BD-RIS architecture over the conventional RIS model in which the phase shift matrix is diagonal.
Abstract:With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike traditional methods, MagicPose4D accepts monocular videos as motion prompts, enabling precise and customizable motion generation. MagicPose4D comprises two key modules: i) Dual-Phase 4D Reconstruction Module} which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase refines the model using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. ii) Cross-category Motion Transfer Module} leverages the predictions from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
Abstract:Human-human communication is like a delicate dance where listeners and speakers concurrently interact to maintain conversational dynamics. Hence, an effective model for generating listener nonverbal behaviors requires understanding the dyadic context and interaction. In this paper, we present an effective framework for creating 3D facial motions in dyadic interactions. Existing work consider a listener as a reactive agent with reflexive behaviors to the speaker's voice and facial motions. The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach that jointly models speakers' and listeners' motions through masking and contrastive learning to learn representations that capture the dyadic context. To enable the generation of non-deterministic behaviors, we encode both listener and speaker motions into discrete latent representations, through VQ-VAE. The pre-trained model is further fine-tuned for motion generation. Extensive experiments demonstrate the superiority of our framework in generating listener motions, establishing a new state-of-the-art according to the quantitative measures capturing the diversity and realism of generated motions. Qualitative results demonstrate the superior capabilities of the proposed approach in generating diverse and realistic expressions, eye blinks and head gestures.
Abstract:Facial action unit (AU) detection is a fundamental block for objective facial expression analysis. Supervised learning approaches require a large amount of manual labeling which is costly. The limited labeled data are also not diverse in terms of gender which can affect model fairness. In this paper, we propose to use synthetically generated data and multi-source domain adaptation (MSDA) to address the problems of the scarcity of labeled data and the diversity of subjects. Specifically, we propose to generate a diverse dataset through synthetic facial expression re-targeting by transferring the expressions from real faces to synthetic avatars. Then, we use MSDA to transfer the AU detection knowledge from a real dataset and the synthetic dataset to a target dataset. Instead of aligning the overall distributions of different domains, we propose Paired Moment Matching (PM2) to align the features of the paired real and synthetic data with the same facial expression. To further improve gender fairness, PM2 matches the features of the real data with a female and a male synthetic image. Our results indicate that synthetic data and the proposed model improve both AU detection performance and fairness across genders, demonstrating its potential to solve AU detection in-the-wild.
Abstract:Modern wireless communication systems are expected to provide improved latency and reliability. To meet these expectations, a short packet length is needed, which makes the first-order Shannon rate an inaccurate performance metric for such communication systems. A more accurate approximation of the achievable rates of finite-block-length (FBL) coding regimes is known as the normal approximation (NA). It is therefore of substantial interest to study the optimization of the FBL rate in multi-user multiple-input multiple-output (MIMO) systems, in which each user may transmit and/or receive multiple data streams. Hence, we formulate a general optimization problem for improving the spectral and energy efficiency of multi-user MIMO-aided ultra-reliable low-latency communication (URLLC) systems, which are assisted by reconfigurable intelligent surfaces (RISs). We show that a RIS is capable of substantially improving the performance of multi-user MIMO-aided URLLC systems. Moreover, the benefits of RIS increase as the packet length and/or the tolerable bit error rate are reduced. This reveals that RISs can be even more beneficial in URLLC systems for improving the FBL rates than in conventional systems approaching Shannon rates.