Abstract:While working within the spatial domain can pose problems associated with ill-conditioned scores caused by power-law decay, recent advances in diffusion-based generative models have shown that transitioning to the wavelet domain offers a promising alternative. However, within the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients, which deviates significantly from the Gaussian assumptions in the diffusion process. To this end, we propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands. In the wavelet domain, we apply score-based generative modeling with well-conditioned scores for low-frequency bands, while utilizing a multi-scale generative adversarial learning for high-frequency bands. As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
Abstract:3D reconstruction aims to recover the dense 3D structure of a scene. It plays an essential role in various applications such as Augmented/Virtual Reality (AR/VR), autonomous driving and robotics. Leveraging multiple views of a scene captured from different viewpoints, Multi-View Stereo (MVS) algorithms synthesize a comprehensive 3D representation, enabling precise reconstruction in complex environments. Due to its efficiency and effectiveness, MVS has become a pivotal method for image-based 3D reconstruction. Recently, with the success of deep learning, many learning-based MVS methods have been proposed, achieving impressive performance against traditional methods. We categorize these learning-based methods as: depth map-based, voxel-based, NeRF-based, 3D Gaussian Splatting-based, and large feed-forward methods. Among these, we focus significantly on depth map-based methods, which are the main family of MVS due to their conciseness, flexibility and scalability. In this survey, we provide a comprehensive review of the literature at the time of this writing. We investigate these learning-based methods, summarize their performances on popular benchmarks, and discuss promising future research directions in this area.
Abstract:With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike traditional methods, MagicPose4D accepts monocular videos as motion prompts, enabling precise and customizable motion generation. MagicPose4D comprises two key modules: i) Dual-Phase 4D Reconstruction Module} which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase refines the model using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. ii) Cross-category Motion Transfer Module} leverages the predictions from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
Abstract:Human-human communication is like a delicate dance where listeners and speakers concurrently interact to maintain conversational dynamics. Hence, an effective model for generating listener nonverbal behaviors requires understanding the dyadic context and interaction. In this paper, we present an effective framework for creating 3D facial motions in dyadic interactions. Existing work consider a listener as a reactive agent with reflexive behaviors to the speaker's voice and facial motions. The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach that jointly models speakers' and listeners' motions through masking and contrastive learning to learn representations that capture the dyadic context. To enable the generation of non-deterministic behaviors, we encode both listener and speaker motions into discrete latent representations, through VQ-VAE. The pre-trained model is further fine-tuned for motion generation. Extensive experiments demonstrate the superiority of our framework in generating listener motions, establishing a new state-of-the-art according to the quantitative measures capturing the diversity and realism of generated motions. Qualitative results demonstrate the superior capabilities of the proposed approach in generating diverse and realistic expressions, eye blinks and head gestures.
Abstract:We present DiffPortrait3D, a conditional diffusion model that is capable of synthesizing 3D-consistent photo-realistic novel views from as few as a single in-the-wild portrait. Specifically, given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views with retained both identity and facial expression. In lieu of time-consuming optimization and fine-tuning, our zero-shot method generalizes well to arbitrary face portraits with unposed camera views, extreme facial expressions, and diverse artistic depictions. At its core, we leverage the generative prior of 2D diffusion models pre-trained on large-scale image datasets as our rendering backbone, while the denoising is guided with disentangled attentive control of appearance and camera pose. To achieve this, we first inject the appearance context from the reference image into the self-attention layers of the frozen UNets. The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view. Furthermore, we insert a trainable cross-view attention module to enhance view consistency, which is further strengthened with a novel 3D-aware noise generation process during inference. We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.
Abstract:In this work, we propose MagicDance, a diffusion-based model for 2D human motion and facial expression transfer on challenging human dance videos. Specifically, we aim to generate human dance videos of any target identity driven by novel pose sequences while keeping the identity unchanged. To this end, we propose a two-stage training strategy to disentangle human motions and appearance (e.g., facial expressions, skin tone and dressing), consisting of the pretraining of an appearance-control block and fine-tuning of an appearance-pose-joint-control block over human dance poses of the same dataset. Our novel design enables robust appearance control with temporally consistent upper body, facial attributes, and even background. The model also generalizes well on unseen human identities and complex motion sequences without the need for any fine-tuning with additional data with diverse human attributes by leveraging the prior knowledge of image diffusion models. Moreover, the proposed model is easy to use and can be considered as a plug-in module/extension to Stable Diffusion. We also demonstrate the model's ability for zero-shot 2D animation generation, enabling not only the appearance transfer from one identity to another but also allowing for cartoon-like stylization given only pose inputs. Extensive experiments demonstrate our superior performance on the TikTok dataset.
Abstract:Facial expression analysis is an important tool for human-computer interaction. In this paper, we introduce LibreFace, an open-source toolkit for facial expression analysis. This open-source toolbox offers real-time and offline analysis of facial behavior through deep learning models, including facial action unit (AU) detection, AU intensity estimation, and facial expression recognition. To accomplish this, we employ several techniques, including the utilization of a large-scale pre-trained network, feature-wise knowledge distillation, and task-specific fine-tuning. These approaches are designed to effectively and accurately analyze facial expressions by leveraging visual information, thereby facilitating the implementation of real-time interactive applications. In terms of Action Unit (AU) intensity estimation, we achieve a Pearson Correlation Coefficient (PCC) of 0.63 on DISFA, which is 7% higher than the performance of OpenFace 2.0 while maintaining highly-efficient inference that runs two times faster than OpenFace 2.0. Despite being compact, our model also demonstrates competitive performance to state-of-the-art facial expression analysis methods on AffecNet, FFHQ, and RAF-DB. Our code will be released at https://github.com/ihp-lab/LibreFace
Abstract:Automatic detection of facial Action Units (AUs) allows for objective facial expression analysis. Due to the high cost of AU labeling and the limited size of existing benchmarks, previous AU detection methods tend to overfit the dataset, resulting in a significant performance loss when evaluated across corpora. To address this problem, we propose FG-Net for generalizable facial action unit detection. Specifically, FG-Net extracts feature maps from a StyleGAN2 model pre-trained on a large and diverse face image dataset. Then, these features are used to detect AUs with a Pyramid CNN Interpreter, making the training efficient and capturing essential local features. The proposed FG-Net achieves a strong generalization ability for heatmap-based AU detection thanks to the generalizable and semantic-rich features extracted from the pre-trained generative model. Extensive experiments are conducted to evaluate within- and cross-corpus AU detection with the widely-used DISFA and BP4D datasets. Compared with the state-of-the-art, the proposed method achieves superior cross-domain performance while maintaining competitive within-domain performance. In addition, FG-Net is data-efficient and achieves competitive performance even when trained on 1000 samples. Our code will be released at \url{https://github.com/ihp-lab/FG-Net}
Abstract:Facial action unit detection has emerged as an important task within facial expression analysis, aimed at detecting specific pre-defined, objective facial expressions, such as lip tightening and cheek raising. This paper presents our submission to the Affective Behavior Analysis in-the-wild (ABAW) 2023 Competition for AU detection. We propose a multi-modal method for facial action unit detection with visual, acoustic, and lexical features extracted from the large pre-trained models. To provide high-quality details for visual feature extraction, we apply super-resolution and face alignment to the training data and show potential performance gain. Our approach achieves the F1 score of 52.3% on the official validation set of the 5th ABAW Challenge.
Abstract:Finding accurate correspondences among different views is the Achilles' heel of unsupervised Multi-View Stereo (MVS). Existing methods are built upon the assumption that corresponding pixels share similar photometric features. However, multi-view images in real scenarios observe non-Lambertian surfaces and experience occlusions. In this work, we propose a novel approach with neural rendering (RC-MVSNet) to solve such ambiguity issues of correspondences among views. Specifically, we impose a depth rendering consistency loss to constrain the geometry features close to the object surface to alleviate occlusions. Concurrently, we introduce a reference view synthesis loss to generate consistent supervision, even for non-Lambertian surfaces. Extensive experiments on DTU and Tanks\&Temples benchmarks demonstrate that our RC-MVSNet approach achieves state-of-the-art performance over unsupervised MVS frameworks and competitive performance to many supervised methods.The trained models and code will be released at https://github.com/Boese0601/RC-MVSNet.