Abstract:Handling occlusion remains a significant challenge for video instance-level tasks like Multiple Object Tracking (MOT) and Video Instance Segmentation (VIS). In this paper, we propose a novel framework, Amodal-Aware Video Instance Segmentation (A2VIS), which incorporates amodal representations to achieve a reliable and comprehensive understanding of both visible and occluded parts of objects in a video. The key intuition is that awareness of amodal segmentation through spatiotemporal dimension enables a stable stream of object information. In scenarios where objects are partially or completely hidden from view, amodal segmentation offers more consistency and less dramatic changes along the temporal axis compared to visible segmentation. Hence, both amodal and visible information from all clips can be integrated into one global instance prototype. To effectively address the challenge of video amodal segmentation, we introduce the spatiotemporal-prior Amodal Mask Head, which leverages visible information intra clips while extracting amodal characteristics inter clips. Through extensive experiments and ablation studies, we show that A2VIS excels in both MOT and VIS tasks in identifying and tracking object instances with a keen understanding of their full shape.
Abstract:Amodal Instance Segmentation (AIS) presents an intriguing challenge, including the segmentation prediction of both visible and occluded parts of objects within images. Previous methods have often relied on shape prior information gleaned from training data to enhance amodal segmentation. However, these approaches are susceptible to overfitting and disregard object category details. Recent advancements highlight the potential of conditioned diffusion models, pretrained on extensive datasets, to generate images from latent space. Drawing inspiration from this, we propose AISDiff with a Diffusion Shape Prior Estimation (DiffSP) module. AISDiff begins with the prediction of the visible segmentation mask and object category, alongside occlusion-aware processing through the prediction of occluding masks. Subsequently, these elements are inputted into our DiffSP module to infer the shape prior of the object. DiffSP utilizes conditioned diffusion models pretrained on extensive datasets to extract rich visual features for shape prior estimation. Additionally, we introduce the Shape Prior Amodal Predictor, which utilizes attention-based feature maps from the shape prior to refine amodal segmentation. Experiments across various AIS benchmarks demonstrate the effectiveness of our AISDiff.
Abstract:Video-Language Models (VLMs), pre-trained on large-scale video-caption datasets, are now standard for robust visual-language representation and downstream tasks. However, their reliance on global contrastive alignment limits their ability to capture fine-grained interactions between visual and textual elements. To address these challenges, we introduce HENASY (Hierarchical ENtities ASsemblY), a novel framework designed for egocentric video analysis that enhances the granularity of video content representations. HENASY employs a compositional approach using an enhanced slot-attention and grouping mechanisms for videos, assembling dynamic entities from video patches. It integrates a local entity encoder for dynamic modeling, a global encoder for broader contextual understanding, and an entity-aware decoder for late-stage fusion, enabling effective video scene dynamics modeling and granular-level alignment between visual entities and text. By incorporating innovative contrastive losses, HENASY significantly improves entity and activity recognition, delivering superior performance on benchmarks such as Ego4D and EpicKitchen, and setting new standards in both zero-shot and extensive video understanding tasks. Our results confirm groundbreaking capabilities of HENASY and establish it as a significant advancement in video-language multimodal research.
Abstract:As the impact of climate change escalates, the global necessity to transition to sustainable energy sources becomes increasingly evident. Renewable energies have emerged as a viable solution for users, with Photovoltaic energy being a favored choice for small installations due to its reliability and efficiency. Accurate mapping of PV installations is crucial for understanding the extension of its adoption and informing energy policy. To meet this need, we introduce S3Former, designed to segment solar panels from aerial imagery and provide size and location information critical for analyzing the impact of such installations on the grid. Solar panel identification is challenging due to factors such as varying weather conditions, roof characteristics, Ground Sampling Distance variations and lack of appropriate initialization weights for optimized training. To tackle these complexities, S3Former features a Masked Attention Mask Transformer incorporating a self-supervised learning pretrained backbone. Specifically, our model leverages low-level and high-level features extracted from the backbone and incorporates an instance query mechanism incorporated on the Transformer architecture to enhance the localization of solar PV installations. We introduce a self-supervised learning phase (pretext task) to improve the initialization weights on the backbone of S3Former. We evaluated S3Former using diverse datasets, demonstrate improvement state-of-the-art models.
Abstract:In the food industry, assessing the quality of poultry carcasses during processing is a crucial step. This study proposes an effective approach for automating the assessment of carcass quality without requiring skilled labor or inspector involvement. The proposed system is based on machine learning (ML) and computer vision (CV) techniques, enabling automated defect detection and carcass quality assessment. To this end, an end-to-end framework called CarcassFormer is introduced. It is built upon a Transformer-based architecture designed to effectively extract visual representations while simultaneously detecting, segmenting, and classifying poultry carcass defects. Our proposed framework is capable of analyzing imperfections resulting from production and transport welfare issues, as well as processing plant stunner, scalder, picker, and other equipment malfunctions. To benchmark the framework, a dataset of 7,321 images was initially acquired, which contained both single and multiple carcasses per image. In this study, the performance of the CarcassFormer system is compared with other state-of-the-art (SOTA) approaches for both classification, detection, and segmentation tasks. Through extensive quantitative experiments, our framework consistently outperforms existing methods, demonstrating remarkable improvements across various evaluation metrics such as AP, AP@50, and AP@75. Furthermore, the qualitative results highlight the strengths of CarcassFormer in capturing fine details, including feathers, and accurately localizing and segmenting carcasses with high precision. To facilitate further research and collaboration, the pre-trained model and source code of CarcassFormer is available for research purposes at: \url{https://github.com/UARK-AICV/CarcassFormer}.
Abstract:Human-human communication is like a delicate dance where listeners and speakers concurrently interact to maintain conversational dynamics. Hence, an effective model for generating listener nonverbal behaviors requires understanding the dyadic context and interaction. In this paper, we present an effective framework for creating 3D facial motions in dyadic interactions. Existing work consider a listener as a reactive agent with reflexive behaviors to the speaker's voice and facial motions. The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach that jointly models speakers' and listeners' motions through masking and contrastive learning to learn representations that capture the dyadic context. To enable the generation of non-deterministic behaviors, we encode both listener and speaker motions into discrete latent representations, through VQ-VAE. The pre-trained model is further fine-tuned for motion generation. Extensive experiments demonstrate the superiority of our framework in generating listener motions, establishing a new state-of-the-art according to the quantitative measures capturing the diversity and realism of generated motions. Qualitative results demonstrate the superior capabilities of the proposed approach in generating diverse and realistic expressions, eye blinks and head gestures.
Abstract:Amodal Instance Segmentation (AIS) presents a challenging task as it involves predicting both visible and occluded parts of objects within images. Existing AIS methods rely on a bidirectional approach, encompassing both the transition from amodal features to visible features (amodal-to-visible) and from visible features to amodal features (visible-to-amodal). Our observation shows that the utilization of amodal features through the amodal-to-visible can confuse the visible features due to the extra information of occluded/hidden segments not presented in visible display. Consequently, this compromised quality of visible features during the subsequent visible-to-amodal transition. To tackle this issue, we introduce ShapeFormer, a decoupled Transformer-based model with a visible-to-amodal transition. It facilitates the explicit relationship between output segmentations and avoids the need for amodal-to-visible transitions. ShapeFormer comprises three key modules: (i) Visible-Occluding Mask Head for predicting visible segmentation with occlusion awareness, (ii) Shape-Prior Amodal Mask Head for predicting amodal and occluded masks, and (iii) Category-Specific Shape Prior Retriever aims to provide shape prior knowledge. Comprehensive experiments and extensive ablation studies across various AIS benchmarks demonstrate the effectiveness of our ShapeFormer. The code is available at: https://github.com/UARK-AICV/ShapeFormer
Abstract:We present a novel approach in the domain of federated learning (FL), particularly focusing on addressing the challenges posed by modality heterogeneity, variability in modality availability across clients, and the prevalent issue of missing data. We introduce a meta-learning framework specifically designed for multimodal federated tasks. Our approach is motivated by the need to enable federated models to robustly adapt when exposed to new modalities, a common scenario in FL where clients often differ in the number of available modalities. The effectiveness of our proposed framework is demonstrated through extensive experimentation on an augmented MNIST dataset, enriched with audio and sign language data. We demonstrate that the proposed algorithm achieves better performance than the baseline on a subset of missing modality scenarios with careful tuning of the meta-learning rates. This is a shortened report, and our work will be extended and updated soon.
Abstract:As climate change intensifies, the global imperative to shift towards sustainable energy sources becomes more pronounced. Photovoltaic (PV) energy is a favored choice due to its reliability and ease of installation. Accurate mapping of PV installations is crucial for understanding their adoption and informing energy policy. To meet this need, we introduce the SolarFormer, designed to segment solar panels from aerial imagery, offering insights into their location and size. However, solar panel identification in Computer Vision is intricate due to various factors like weather conditions, roof conditions, and Ground Sampling Distance (GSD) variations. To tackle these complexities, we present the SolarFormer, featuring a multi-scale Transformer encoder and a masked-attention Transformer decoder. Our model leverages low-level features and incorporates an instance query mechanism to enhance the localization of solar PV installations. We rigorously evaluated our SolarFormer using diverse datasets, including GGE (France), IGN (France), and USGS (California, USA), across different GSDs. Our extensive experiments consistently demonstrate that our model either matches or surpasses state-of-the-art models, promising enhanced solar panel segmentation for global sustainable energy initiatives.
Abstract:Existing privacy-preserving speech representation learning methods target a single application domain. In this paper, we present a novel framework to anonymize utterance-level speech embeddings generated by pre-trained encoders and show its effectiveness for a range of speech classification tasks. Specifically, given the representations from a pre-trained encoder, we train a Transformer to estimate the representations for the same utterances spoken by other speakers. During inference, the extracted representations can be converted into different identities to preserve privacy. We compare the results with the voice anonymization baselines from the VoicePrivacy 2022 challenge. We evaluate our framework on speaker identification for privacy and emotion recognition, depression classification, and intent classification for utility. Our method outperforms the baselines on privacy and utility in paralinguistic tasks and achieves comparable performance for intent classification.