Abstract:Chick sexing, the process of determining the gender of day-old chicks, is a critical task in the poultry industry due to the distinct roles that each gender plays in production. While effective traditional methods achieve high accuracy, color, and wing feather sexing is exclusive to specific breeds, and vent sexing is invasive and requires trained experts. To address these challenges, we propose a novel approach inspired by facial gender classification techniques in humans: facial chick sexing. This new method does not require expert knowledge and aims to reduce training time while enhancing animal welfare by minimizing chick manipulation. We develop a comprehensive system for training and inference that includes data collection, facial and keypoint detection, facial alignment, and classification. We evaluate our model on two sets of images: Cropped Full Face and Cropped Middle Face, both of which maintain essential facial features of the chick for further analysis. Our experiment demonstrates the promising viability, with a final accuracy of 81.89%, of this approach for future practices in chick sexing by making them more universally applicable.
Abstract:In the food industry, assessing the quality of poultry carcasses during processing is a crucial step. This study proposes an effective approach for automating the assessment of carcass quality without requiring skilled labor or inspector involvement. The proposed system is based on machine learning (ML) and computer vision (CV) techniques, enabling automated defect detection and carcass quality assessment. To this end, an end-to-end framework called CarcassFormer is introduced. It is built upon a Transformer-based architecture designed to effectively extract visual representations while simultaneously detecting, segmenting, and classifying poultry carcass defects. Our proposed framework is capable of analyzing imperfections resulting from production and transport welfare issues, as well as processing plant stunner, scalder, picker, and other equipment malfunctions. To benchmark the framework, a dataset of 7,321 images was initially acquired, which contained both single and multiple carcasses per image. In this study, the performance of the CarcassFormer system is compared with other state-of-the-art (SOTA) approaches for both classification, detection, and segmentation tasks. Through extensive quantitative experiments, our framework consistently outperforms existing methods, demonstrating remarkable improvements across various evaluation metrics such as AP, AP@50, and AP@75. Furthermore, the qualitative results highlight the strengths of CarcassFormer in capturing fine details, including feathers, and accurately localizing and segmenting carcasses with high precision. To facilitate further research and collaboration, the pre-trained model and source code of CarcassFormer is available for research purposes at: \url{https://github.com/UARK-AICV/CarcassFormer}.