Abstract:We present Buffer Anytime, a framework for estimation of depth and normal maps (which we call geometric buffers) from video that eliminates the need for paired video--depth and video--normal training data. Instead of relying on large-scale annotated video datasets, we demonstrate high-quality video buffer estimation by leveraging single-image priors with temporal consistency constraints. Our zero-shot training strategy combines state-of-the-art image estimation models based on optical flow smoothness through a hybrid loss function, implemented via a lightweight temporal attention architecture. Applied to leading image models like Depth Anything V2 and Marigold-E2E-FT, our approach significantly improves temporal consistency while maintaining accuracy. Experiments show that our method not only outperforms image-based approaches but also achieves results comparable to state-of-the-art video models trained on large-scale paired video datasets, despite using no such paired video data.
Abstract:We propose RelitLRM, a Large Reconstruction Model (LRM) for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations from sparse (4-8) posed images captured under unknown static lighting. Unlike prior inverse rendering methods requiring dense captures and slow optimization, often causing artifacts like incorrect highlights or shadow baking, RelitLRM adopts a feed-forward transformer-based model with a novel combination of a geometry reconstructor and a relightable appearance generator based on diffusion. The model is trained end-to-end on synthetic multi-view renderings of objects under varying known illuminations. This architecture design enables to effectively decompose geometry and appearance, resolve the ambiguity between material and lighting, and capture the multi-modal distribution of shadows and specularity in the relit appearance. We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines while being significantly faster. Our project page is available at: https://relit-lrm.github.io/.
Abstract:Research on video generation has recently made tremendous progress, enabling high-quality videos to be generated from text prompts or images. Adding control to the video generation process is an important goal moving forward and recent approaches that condition video generation models on camera trajectories make strides towards it. Yet, it remains challenging to generate a video of the same scene from multiple different camera trajectories. Solutions to this multi-video generation problem could enable large-scale 3D scene generation with editable camera trajectories, among other applications. We introduce collaborative video diffusion (CVD) as an important step towards this vision. The CVD framework includes a novel cross-video synchronization module that promotes consistency between corresponding frames of the same video rendered from different camera poses using an epipolar attention mechanism. Trained on top of a state-of-the-art camera-control module for video generation, CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines, as shown in extensive experiments. Project page: https://collaborativevideodiffusion.github.io/.
Abstract:Efficient generation of 3D digital humans is important in several industries, including virtual reality, social media, and cinematic production. 3D generative adversarial networks (GANs) have demonstrated state-of-the-art (SOTA) quality and diversity for generated assets. Current 3D GAN architectures, however, typically rely on volume representations, which are slow to render, thereby hampering the GAN training and requiring multi-view-inconsistent 2D upsamplers. Here, we introduce Gaussian Shell Maps (GSMs) as a framework that connects SOTA generator network architectures with emerging 3D Gaussian rendering primitives using an articulable multi shell--based scaffold. In this setting, a CNN generates a 3D texture stack with features that are mapped to the shells. The latter represent inflated and deflated versions of a template surface of a digital human in a canonical body pose. Instead of rasterizing the shells directly, we sample 3D Gaussians on the shells whose attributes are encoded in the texture features. These Gaussians are efficiently and differentiably rendered. The ability to articulate the shells is important during GAN training and, at inference time, to deform a body into arbitrary user-defined poses. Our efficient rendering scheme bypasses the need for view-inconsistent upsamplers and achieves high-quality multi-view consistent renderings at a native resolution of $512 \times 512$ pixels. We demonstrate that GSMs successfully generate 3D humans when trained on single-view datasets, including SHHQ and DeepFashion.
Abstract:We introduce Stanford-ORB, a new real-world 3D Object inverse Rendering Benchmark. Recent advances in inverse rendering have enabled a wide range of real-world applications in 3D content generation, moving rapidly from research and commercial use cases to consumer devices. While the results continue to improve, there is no real-world benchmark that can quantitatively assess and compare the performance of various inverse rendering methods. Existing real-world datasets typically only consist of the shape and multi-view images of objects, which are not sufficient for evaluating the quality of material recovery and object relighting. Methods capable of recovering material and lighting often resort to synthetic data for quantitative evaluation, which on the other hand does not guarantee generalization to complex real-world environments. We introduce a new dataset of real-world objects captured under a variety of natural scenes with ground-truth 3D scans, multi-view images, and environment lighting. Using this dataset, we establish the first comprehensive real-world evaluation benchmark for object inverse rendering tasks from in-the-wild scenes, and compare the performance of various existing methods.
Abstract:Recent advances in neural radiance fields have enabled the high-fidelity 3D reconstruction of complex scenes for novel view synthesis. However, it remains underexplored how the appearance of such representations can be efficiently edited while maintaining photorealism. In this work, we present PaletteNeRF, a novel method for photorealistic appearance editing of neural radiance fields (NeRF) based on 3D color decomposition. Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases (i.e., 3D segmentations defined by a group of NeRF-type functions) that are shared across the scene. While our palette-based bases are view-independent, we also predict a view-dependent function to capture the color residual (e.g., specular shading). During training, we jointly optimize the basis functions and the color palettes, and we also introduce novel regularizers to encourage the spatial coherence of the decomposition. Our method allows users to efficiently edit the appearance of the 3D scene by modifying the color palettes. We also extend our framework with compressed semantic features for semantic-aware appearance editing. We demonstrate that our technique is superior to baseline methods both quantitatively and qualitatively for appearance editing of complex real-world scenes.
Abstract:We present a novel method to acquire object representations from online image collections, capturing high-quality geometry and material properties of arbitrary objects from photographs with varying cameras, illumination, and backgrounds. This enables various object-centric rendering applications such as novel-view synthesis, relighting, and harmonized background composition from challenging in-the-wild input. Using a multi-stage approach extending neural radiance fields, we first infer the surface geometry and refine the coarsely estimated initial camera parameters, while leveraging coarse foreground object masks to improve the training efficiency and geometry quality. We also introduce a robust normal estimation technique which eliminates the effect of geometric noise while retaining crucial details. Lastly, we extract surface material properties and ambient illumination, represented in spherical harmonics with extensions that handle transient elements, e.g. sharp shadows. The union of these components results in a highly modular and efficient object acquisition framework. Extensive evaluations and comparisons demonstrate the advantages of our approach in capturing high-quality geometry and appearance properties useful for rendering applications.
Abstract:Establishing dense correspondence between two images is a fundamental computer vision problem, which is typically tackled by matching local feature descriptors. However, without global awareness, such local features are often insufficient for disambiguating similar regions. And computing the pairwise feature correlation across images is both computation-expensive and memory-intensive. To make the local features aware of the global context and improve their matching accuracy, we introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points. Specifically, we first propose a graph structure that utilizes anchor points to provide sparse but reliable prior on inter- and intra-image context and propagates them to all image points via directed edges. We also design a graph-structured network to broadcast multi-level contexts via light-weighted message-passing layers and generate high-resolution feature maps at low memory cost. Finally, based on the predicted feature maps, we introduce a coarse-to-fine framework for accurate correspondence prediction using cycle consistency. Our feature descriptors capture both local and global information, thus enabling a continuous feature field for querying arbitrary points at high resolution. Through comprehensive ablative experiments and evaluations on large-scale indoor and outdoor datasets, we demonstrate that our method advances the state-of-the-art of correspondence learning on most benchmarks.
Abstract:A deep generative model that describes human motions can benefit a wide range of fundamental computer vision and graphics tasks, such as providing robustness to video-based human pose estimation, predicting complete body movements for motion capture systems during occlusions, and assisting key frame animation with plausible movements. In this paper, we present a method for learning complex human motions independent of specific tasks using a combined global and local latent space to facilitate coarse and fine-grained modeling. Specifically, we propose a hierarchical motion variational autoencoder (HM-VAE) that consists of a 2-level hierarchical latent space. While the global latent space captures the overall global body motion, the local latent space enables to capture the refined poses of the different body parts. We demonstrate the effectiveness of our hierarchical motion variational autoencoder in a variety of tasks including video-based human pose estimation, motion completion from partial observations, and motion synthesis from sparse key-frames. Even though, our model has not been trained for any of these tasks specifically, it provides superior performance than task-specific alternatives. Our general-purpose human motion prior model can fix corrupted human body animations and generate complete movements from incomplete observations.
Abstract:The creation of high-fidelity computer-generated (CG) characters used in film and gaming requires intensive manual labor and a comprehensive set of facial assets to be captured with complex hardware, resulting in high cost and long production cycles. In order to simplify and accelerate this digitization process, we propose a framework for the automatic generation of high-quality dynamic facial assets, including rigs which can be readily deployed for artists to polish. Our framework takes a single scan as input to generate a set of personalized blendshapes, dynamic and physically-based textures, as well as secondary facial components (e.g., teeth and eyeballs). Built upon a facial database consisting of pore-level details, with over $4,000$ scans of varying expressions and identities, we adopt a self-supervised neural network to learn personalized blendshapes from a set of template expressions. We also model the joint distribution between identities and expressions, enabling the inference of the full set of personalized blendshapes with dynamic appearances from a single neutral input scan. Our generated personalized face rig assets are seamlessly compatible with cutting-edge industry pipelines for facial animation and rendering. We demonstrate that our framework is robust and effective by inferring on a wide range of novel subjects, and illustrate compelling rendering results while animating faces with generated customized physically-based dynamic textures.