Abstract:Recent advances in video diffusion models have enabled realistic and controllable human image animation with temporal coherence. Although generating reasonable results, existing methods often overlook the need for regional supervision in crucial areas such as the face and hands, and neglect the explicit modeling for motion blur, leading to unrealistic low-quality synthesis. To address these limitations, we first leverage regional supervision for detailed regions to enhance face and hand faithfulness. Second, we model the motion blur explicitly to further improve the appearance quality. Third, we explore novel training strategies for high-resolution human animation to improve the overall fidelity. Experimental results demonstrate that our proposed method outperforms state-of-the-art approaches, achieving significant improvements upon the strongest baseline by more than 21.0% and 57.4% in terms of reconstruction precision (L1) and perceptual quality (FVD) on HumanDance dataset. Code and model will be made available.
Abstract:We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation. Specifically, given a single portrait as appearance reference, we aim to animate it with motion derived from a driving video, capturing both highly dynamic and subtle facial expressions along with wide-range head movements. As its core, we leverage the generative prior of a pre-trained diffusion model as the rendering backbone, while achieve fine-grained head pose and expression control with novel controlling signals within the framework of ControlNet. In contrast to conventional coarse explicit controls such as facial landmarks, our motion control module is learned to interpret the dynamics directly from the original driving RGB inputs. The motion accuracy is further enhanced with a patch-based local control module that effectively enhance the motion attention to small-scale nuances like eyeball positions. Notably, to mitigate the identity leakage from the driving signals, we train our motion control modules with scaling-augmented cross-identity images, ensuring maximized disentanglement from the appearance reference modules. Experimental results demonstrate the universal effectiveness of X-Portrait across a diverse range of facial portraits and expressive driving sequences, and showcase its proficiency in generating captivating portrait animations with consistently maintained identity characteristics.
Abstract:We present DiffPortrait3D, a conditional diffusion model that is capable of synthesizing 3D-consistent photo-realistic novel views from as few as a single in-the-wild portrait. Specifically, given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views with retained both identity and facial expression. In lieu of time-consuming optimization and fine-tuning, our zero-shot method generalizes well to arbitrary face portraits with unposed camera views, extreme facial expressions, and diverse artistic depictions. At its core, we leverage the generative prior of 2D diffusion models pre-trained on large-scale image datasets as our rendering backbone, while the denoising is guided with disentangled attentive control of appearance and camera pose. To achieve this, we first inject the appearance context from the reference image into the self-attention layers of the frozen UNets. The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view. Furthermore, we insert a trainable cross-view attention module to enhance view consistency, which is further strengthened with a novel 3D-aware noise generation process during inference. We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.
Abstract:The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Abstract:We propose a novel framework for 3D hand shape reconstruction and hand-object grasp optimization from a single RGB image. The representation of hand-object contact regions is critical for accurate reconstructions. Instead of approximating the contact regions with sparse points, as in previous works, we propose a dense representation in the form of a UV coordinate map. Furthermore, we introduce inference-time optimization to fine-tune the grasp and improve interactions between the hand and the object. Our pipeline increases hand shape reconstruction accuracy and produces a vibrant hand texture. Experiments on datasets such as Ho3D, FreiHAND, and DexYCB reveal that our proposed method outperforms the state-of-the-art.
Abstract:We propose a novel approach to generate temporally coherent UV coordinates for loose clothing. Our method is not constrained by human body outlines and can capture loose garments and hair. We implemented a differentiable pipeline to learn UV mapping between a sequence of RGB inputs and textures via UV coordinates. Instead of treating the UV coordinates of each frame separately, our data generation approach connects all UV coordinates via feature matching for temporal stability. Subsequently, a generative model is trained to balance the spatial quality and temporal stability. It is driven by supervised and unsupervised losses in both UV and image spaces. Our experiments show that the trained models output high-quality UV coordinates and generalize to new poses. Once a sequence of UV coordinates has been inferred by our model, it can be used to flexibly synthesize new looks and modified visual styles. Compared to existing methods, our approach reduces the computational workload to animate new outfits by several orders of magnitude.
Abstract:We propose a novel training approach for improving the generalization in neural networks. We show that in contrast to regular constraints for orthogonality, our approach represents a {\em data-dependent} orthogonality constraint, and is closely related to singular value decompositions of the weight matrices. We also show how our formulation is easy to realize in practical network architectures via a reverse pass, which aims for reconstructing the full sequence of internal states of the network. Despite being a surprisingly simple change, we demonstrate that this forward-backward training approach, which we refer to as {\em racecar} training, leads to significantly more generic features being extracted from a given data set. Networks trained with our approach show more balanced mutual information between input and output throughout all layers, yield improved explainability and, exhibit improved performance for a variety of tasks and task transfers.
Abstract:We propose a novel method to up-sample volumetric functions with generative neural networks using several orthogonal passes. Our method decomposes generative problems on Cartesian field functions into multiple smaller sub-problems that can be learned more efficiently. Specifically, we utilize two separate generative adversarial networks: the first one up-scales slices which are parallel to the XY-plane, whereas the second one refines the whole volume along the Z-axis working on slices in the YZ-plane. In this way, we obtain full coverage for the 3D target function and can leverage spatio-temporal supervision with a set of discriminators. Additionally, we demonstrate that our method can be combined with curriculum learning and progressive growing approaches. We arrive at a first method that can up-sample volumes by a factor of eight along each dimension, i.e., increasing the number of degrees of freedom by 512. Large volumetric up-scaling factors such as this one have previously not been attainable as the required number of weights in the neural networks renders adversarial training runs prohibitively difficult. We demonstrate the generality of our trained networks with a series of comparisons to previous work, a variety of complex 3D results, and an analysis of the resulting performance.
Abstract:Adversarial training has been highly successful in the context of image super-resolution. It was demonstrated to yield realistic and highly detailed results. Despite this success, many state-of-the-art methods for video super-resolution still favor simpler norms such as $L_2$ over adversarial loss functions. This is caused by the fact that the averaging nature of direct vector norms as loss functions leads to temporal smoothness. The lack of spatial detail means temporal coherence is easily established. In our work, we instead propose an adversarial training for video super-resolution that leads to temporally coherent solutions without sacrificing spatial detail. In our generator, we use a recurrent, residual framework that naturally encourages temporal consistency. For adversarial training, we propose a novel spatio-temporal discriminator in combination with motion compensation to guarantee photo-realistic and temporally coherent details in the results. We additionally identify a class of temporal artifacts in these recurrent networks, and propose a novel Ping-Pong loss to remove them. Quantifying the temporal coherence for image super-resolution tasks has also not been addressed previously. We propose a first set of metrics to evaluate the accuracy as well as the perceptual quality of the temporal evolution, and we demonstrate that our method outperforms previous work by yielding realistic and detailed images with natural temporal changes.
Abstract:We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.