University of Science and Technology of China
Abstract:Recent advances in co-speech gesture and talking head generation have been impressive, yet most methods focus on only one of the two tasks. Those that attempt to generate both often rely on separate models or network modules, increasing training complexity and ignoring the inherent relationship between face and body movements. To address the challenges, in this paper, we propose a novel model architecture that jointly generates face and body motions within a single network. This approach leverages shared weights between modalities, facilitated by adapters that enable adaptation to a common latent space. Our experiments demonstrate that the proposed framework not only maintains state-of-the-art co-speech gesture and talking head generation performance but also significantly reduces the number of parameters required.
Abstract:Audio-driven talking video generation has advanced significantly, but existing methods often depend on video-to-video translation techniques and traditional generative networks like GANs and they typically generate taking heads and co-speech gestures separately, leading to less coherent outputs. Furthermore, the gestures produced by these methods often appear overly smooth or subdued, lacking in diversity, and many gesture-centric approaches do not integrate talking head generation. To address these limitations, we introduce DiffTED, a new approach for one-shot audio-driven TED-style talking video generation from a single image. Specifically, we leverage a diffusion model to generate sequences of keypoints for a Thin-Plate Spline motion model, precisely controlling the avatar's animation while ensuring temporally coherent and diverse gestures. This innovative approach utilizes classifier-free guidance, empowering the gestures to flow naturally with the audio input without relying on pre-trained classifiers. Experiments demonstrate that DiffTED generates temporally coherent talking videos with diverse co-speech gestures.
Abstract:Urban waterlogging poses a major risk to public safety and infrastructure. Conventional methods using water-level sensors need high-maintenance to hardly achieve full coverage. Recent advances employ surveillance camera imagery and deep learning for detection, yet these struggle amidst scarce data and adverse environmental conditions. In this paper, we establish a challenging Urban Waterlogging Benchmark (UW-Bench) under diverse adverse conditions to advance real-world applications. We propose a Large-Small Model co-adapter paradigm (LSM-adapter), which harnesses the substantial generic segmentation potential of large model and the specific task-directed guidance of small model. Specifically, a Triple-S Prompt Adapter module alongside a Dynamic Prompt Combiner are proposed to generate then merge multiple prompts for mask decoder adaptation. Meanwhile, a Histogram Equalization Adap-ter module is designed to infuse the image specific information for image encoder adaptation. Results and analysis show the challenge and superiority of our developed benchmark and algorithm. Project page: \url{https://github.com/zhang-chenxu/LSM-Adapter}
Abstract:State Space Model (SSM) is a mathematical model used to describe and analyze the behavior of dynamic systems. This model has witnessed numerous applications in several fields, including control theory, signal processing, economics and machine learning. In the field of deep learning, state space models are used to process sequence data, such as time series analysis, natural language processing (NLP) and video understanding. By mapping sequence data to state space, long-term dependencies in the data can be better captured. In particular, modern SSMs have shown strong representational capabilities in NLP, especially in long sequence modeling, while maintaining linear time complexity. Notably, based on the latest state-space models, Mamba merges time-varying parameters into SSMs and formulates a hardware-aware algorithm for efficient training and inference. Given its impressive efficiency and strong long-range dependency modeling capability, Mamba is expected to become a new AI architecture that may outperform Transformer. Recently, a number of works have attempted to study the potential of Mamba in various fields, such as general vision, multi-modal, medical image analysis and remote sensing image analysis, by extending Mamba from natural language domain to visual domain. To fully understand Mamba in the visual domain, we conduct a comprehensive survey and present a taxonomy study. This survey focuses on Mamba's application to a variety of visual tasks and data types, and discusses its predecessors, recent advances and far-reaching impact on a wide range of domains. Since Mamba is now on an upward trend, please actively notice us if you have new findings, and new progress on Mamba will be included in this survey in a timely manner and updated on the Mamba project at https://github.com/lx6c78/Vision-Mamba-A-Comprehensive-Survey-and-Taxonomy.
Abstract:Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization ($\sim15$min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
Abstract:This paper addresses the issue of active speaker detection (ASD) in noisy environments and formulates a robust active speaker detection (rASD) problem. Existing ASD approaches leverage both audio and visual modalities, but non-speech sounds in the surrounding environment can negatively impact performance. To overcome this, we propose a novel framework that utilizes audio-visual speech separation as guidance to learn noise-free audio features. These features are then utilized in an ASD model, and both tasks are jointly optimized in an end-to-end framework. Our proposed framework mitigates residual noise and audio quality reduction issues that can occur in a naive cascaded two-stage framework that directly uses separated speech for ASD, and enables the two tasks to be optimized simultaneously. To further enhance the robustness of the audio features and handle inherent speech noises, we propose a dynamic weighted loss approach to train the speech separator. We also collected a real-world noise audio dataset to facilitate investigations. Experiments demonstrate that non-speech audio noises significantly impact ASD models, and our proposed approach improves ASD performance in noisy environments. The framework is general and can be applied to different ASD approaches to improve their robustness. Our code, models, and data will be released.
Abstract:The recently developed Sora model [1] has exhibited remarkable capabilities in video generation, sparking intense discussions regarding its ability to simulate real-world phenomena. Despite its growing popularity, there is a lack of established metrics to evaluate its fidelity to real-world physics quantitatively. In this paper, we introduce a new benchmark that assesses the quality of the generated videos based on their adherence to real-world physics principles. We employ a method that transforms the generated videos into 3D models, leveraging the premise that the accuracy of 3D reconstruction is heavily contingent on the video quality. From the perspective of 3D reconstruction, we use the fidelity of the geometric constraints satisfied by the constructed 3D models as a proxy to gauge the extent to which the generated videos conform to real-world physics rules. Project page: https://sora-geometrical-consistency.github.io/
Abstract:The generation of emotional talking faces from a single portrait image remains a significant challenge. The simultaneous achievement of expressive emotional talking and accurate lip-sync is particularly difficult, as expressiveness is often compromised for the accuracy of lip-sync. As widely adopted by many prior works, the LSTM network often fails to capture the subtleties and variations of emotional expressions. To address these challenges, we introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently. In the first stage, we propose EmoDiff, a novel diffusion module that generates diverse highly dynamic emotional expressions and head poses in accordance with the audio and the referenced emotion style. Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style. To this end, we deploy a video-to-video rendering module to transfer the expressions and lip motions from our proxy 3D avatar to an arbitrary portrait. Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
Abstract:We study the problem of creating high-fidelity and animatable 3D avatars from only textual descriptions. Existing text-to-avatar methods are either limited to static avatars which cannot be animated or struggle to generate animatable avatars with promising quality and precise pose control. To address these limitations, we propose AvatarStudio, a coarse-to-fine generative model that generates explicit textured 3D meshes for animatable human avatars. Specifically, AvatarStudio begins with a low-resolution NeRF-based representation for coarse generation, followed by incorporating SMPL-guided articulation into the explicit mesh representation to support avatar animation and high resolution rendering. To ensure view consistency and pose controllability of the resulting avatars, we introduce a 2D diffusion model conditioned on DensePose for Score Distillation Sampling supervision. By effectively leveraging the synergy between the articulated mesh representation and the DensePose-conditional diffusion model, AvatarStudio can create high-quality avatars from text that are ready for animation, significantly outperforming previous methods. Moreover, it is competent for many applications, e.g., multimodal avatar animations and style-guided avatar creation. For more results, please refer to our project page: http://jeff95.me/projects/avatarstudio.html
Abstract:This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence. Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion. Despite achieving reasonable results, these approaches face challenges in maintaining temporal consistency throughout the animation due to the lack of temporal modeling and poor preservation of reference identity. In this work, we introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity. To achieve this, we first develop a video diffusion model to encode temporal information. Second, to maintain the appearance coherence across frames, we introduce a novel appearance encoder to retain the intricate details of the reference image. Leveraging these two innovations, we further employ a simple video fusion technique to encourage smooth transitions for long video animation. Empirical results demonstrate the superiority of our method over baseline approaches on two benchmarks. Notably, our approach outperforms the strongest baseline by over 38% in terms of video fidelity on the challenging TikTok dancing dataset. Code and model will be made available.