Abstract:Unsupervised domain adaptation (UDA) intends to transfer knowledge from a labeled source domain to an unlabeled target domain. Many current methods focus on learning feature representations that are both discriminative for classification and invariant across domains by simultaneously optimizing domain alignment and classification tasks. However, these methods often overlook a crucial challenge: the inherent conflict between these two tasks during gradient-based optimization. In this paper, we delve into this issue and introduce two effective solutions known as Gradient Harmonization, including GH and GH++, to mitigate the conflict between domain alignment and classification tasks. GH operates by altering the gradient angle between different tasks from an obtuse angle to an acute angle, thus resolving the conflict and trade-offing the two tasks in a coordinated manner. Yet, this would cause both tasks to deviate from their original optimization directions. We thus further propose an improved version, GH++, which adjusts the gradient angle between tasks from an obtuse angle to a vertical angle. This not only eliminates the conflict but also minimizes deviation from the original gradient directions. Finally, for optimization convenience and efficiency, we evolve the gradient harmonization strategies into a dynamically weighted loss function using an integral operator on the harmonized gradient. Notably, GH/GH++ are orthogonal to UDA and can be seamlessly integrated into most existing UDA models. Theoretical insights and experimental analyses demonstrate that the proposed approaches not only enhance popular UDA baselines but also improve recent state-of-the-art models.
Abstract:Urban waterlogging poses a major risk to public safety and infrastructure. Conventional methods using water-level sensors need high-maintenance to hardly achieve full coverage. Recent advances employ surveillance camera imagery and deep learning for detection, yet these struggle amidst scarce data and adverse environmental conditions. In this paper, we establish a challenging Urban Waterlogging Benchmark (UW-Bench) under diverse adverse conditions to advance real-world applications. We propose a Large-Small Model co-adapter paradigm (LSM-adapter), which harnesses the substantial generic segmentation potential of large model and the specific task-directed guidance of small model. Specifically, a Triple-S Prompt Adapter module alongside a Dynamic Prompt Combiner are proposed to generate then merge multiple prompts for mask decoder adaptation. Meanwhile, a Histogram Equalization Adap-ter module is designed to infuse the image specific information for image encoder adaptation. Results and analysis show the challenge and superiority of our developed benchmark and algorithm. Project page: \url{https://github.com/zhang-chenxu/LSM-Adapter}
Abstract:Mixed-Modal Image Retrieval (MMIR) as a flexible search paradigm has attracted wide attention. However, previous approaches always achieve limited performance, due to two critical factors are seriously overlooked. 1) The contribution of image and text modalities is different, but incorrectly treated equally. 2) There exist inherent labeling noises in describing users' intentions with text in web datasets from diverse real-world scenarios, giving rise to overfitting. We propose a Dynamic Weighted Combiner (DWC) to tackle the above challenges, which includes three merits. First, we propose an Editable Modality De-equalizer (EMD) by taking into account the contribution disparity between modalities, containing two modality feature editors and an adaptive weighted combiner. Second, to alleviate labeling noises and data bias, we propose a dynamic soft-similarity label generator (SSG) to implicitly improve noisy supervision. Finally, to bridge modality gaps and facilitate similarity learning, we propose a CLIP-based mutual enhancement module alternately trained by a mixed-modality contrastive loss. Extensive experiments verify that our proposed model significantly outperforms state-of-the-art methods on real-world datasets. The source code is available at \url{https://github.com/fuxianghuang1/DWC}.