Abstract:As a pivotal technique for improving the defense of deep models, adversarial robustness transfer via distillation has demonstrated remarkable success in conventional image classification tasks. However, this paradigm encounters critical challenges when applied to vision-language models (VLM) (e.g., CLIP): constructing adversarially robust teacher for large-scale multi-modal models demands prohibitively high computational resources. We bridge this gap by revealing an interesting phenomenon: vanilla CLIP (without adversarial training) exhibits intrinsic defensive capabilities against adversarial examples generated by another CLIP with different architectures. We formally define this as proxy adversarial robustness, and naturally propose a Heterogeneous Proxy Transfer (HPT) framework that establishes cross-architectural robustness distillation channels between CLIP variants, effortlessly enabling the VLM robustness transfer from proxy to target models. Yet, such proxy transfer paradigm easily induces severe overfitting, leading to a sharp degradation in zero-shot natural generalization. To resolve that, we design Generalization-Pivot Decoupling (GPD) by leveraging the difference in learning rate scheduling. This decouples the proxy transfer process into a generalization-anchored warm-up that maintains generalization and a generalization-pulled HPT that promotes adversarial robustness, to achieve an equilibrium between natural generalization and adversarial robustness. Extensive experiments on 15 zero-shot datasets demonstrate the effectiveness of our HPT-GPD method. The code is available at the website of github.com/fxw13/HPT-GPD.
Abstract:The widespread use of Vision Language Models (VLMs, e.g. CLIP) has raised concerns about their vulnerability to sophisticated and imperceptible adversarial attacks. These attacks could compromise model performance and system security in cross-modal tasks. To address this challenge, three main defense paradigms have been proposed: Training-time Defense, Test-time Adaptation Defense, and Training-free Defense. Training-time Defense involves modifying the training process, typically through adversarial fine-tuning to improve the robustness to adversarial examples. While effective, this approach requires substantial computational resources and may not generalize across all adversarial attacks. Test-time Adaptation Defense focuses on adapting the model at inference time by updating its parameters to handle unlabeled adversarial examples, offering flexibility but often at the cost of increased complexity and computational overhead. Training-free Defense avoids modifying the model itself, instead focusing on altering the adversarial inputs or their feature embeddings, which enforces input perturbations to mitigate the impact of attacks without additional training. This survey reviews the latest advancements in adversarial defense strategies for VLMs, highlighting the strengths and limitations of such approaches and discussing ongoing challenges in enhancing the robustness of VLMs.
Abstract:Unsupervised domain adaptation (UDA) aims to transfer knowledge from a label-rich source domain to an unlabeled target domain by addressing domain shifts. Most UDA approaches emphasize transfer ability, but often overlook robustness against adversarial attacks. Although vanilla adversarial training (VAT) improves the robustness of deep neural networks, it has little effect on UDA. This paper focuses on answering three key questions: 1) Why does VAT, known for its defensive effectiveness, fail in the UDA paradigm? 2) What is the generalization bound theory under attacks and how does it evolve from classical UDA theory? 3) How can we implement a robustification training procedure without complex modifications? Specifically, we explore and reveal the inherent entanglement challenge in general UDA+VAT paradigm, and propose an unsupervised robust domain adaptation (URDA) paradigm. We further derive the generalization bound theory of the URDA paradigm so that it can resist adversarial noise and domain shift. To the best of our knowledge, this is the first time to establish the URDA paradigm and theory. We further introduce a simple, novel yet effective URDA algorithm called Disentangled Adversarial Robustness Training (DART), a two-step training procedure that ensures both transferability and robustness. DART first pre-trains an arbitrary UDA model, and then applies an instantaneous robustification post-training step via disentangled distillation.Experiments on four benchmark datasets with/without attacks show that DART effectively enhances robustness while maintaining domain adaptability, and validate the URDA paradigm and theory.
Abstract:Person re-identification (ReID) has made great strides thanks to the data-driven deep learning techniques. However, the existing benchmark datasets lack diversity, and models trained on these data cannot generalize well to dynamic wild scenarios. To meet the goal of improving the explicit generalization of ReID models, we develop a new Open-World, Diverse, Cross-Spatial-Temporal dataset named OWD with several distinct features. 1) Diverse collection scenes: multiple independent open-world and highly dynamic collecting scenes, including streets, intersections, shopping malls, etc. 2) Diverse lighting variations: long time spans from daytime to nighttime with abundant illumination changes. 3) Diverse person status: multiple camera networks in all seasons with normal/adverse weather conditions and diverse pedestrian appearances (e.g., clothes, personal belongings, poses, etc.). 4) Protected privacy: invisible faces for privacy critical applications. To improve the implicit generalization of ReID, we further propose a Latent Domain Expansion (LDE) method to develop the potential of source data, which decouples discriminative identity-relevant and trustworthy domain-relevant features and implicitly enforces domain-randomized identity feature space expansion with richer domain diversity to facilitate domain invariant representations. Our comprehensive evaluations with most benchmark datasets in the community are crucial for progress, although this work is far from the grand goal toward open-world and dynamic wild applications.
Abstract:Adversarial attacks pose a challenge to the deployment of deep neural networks (DNNs), while previous defense models overlook the generalization to various attacks. Inspired by targeted therapies for cancer, we view adversarial samples as local lesions of natural benign samples, because a key finding is that salient attack in an adversarial sample dominates the attacking process, while trivial attack unexpectedly provides trustworthy evidence for obtaining generalizable robustness. Based on this finding, a Pixel Surgery and Semantic Regeneration (PSSR) model following the targeted therapy mechanism is developed, which has three merits: 1) To remove the salient attack, a score-based Pixel Surgery module is proposed, which retains the trivial attack as a kind of invariance information. 2) To restore the discriminative content, a Semantic Regeneration module based on a conditional alignment extrapolator is proposed, which achieves pixel and semantic consistency. 3) To further harmonize robustness and accuracy, an intractable problem, a self-augmentation regularizer with adversarial R-drop is designed. Experiments on numerous benchmarks show the superiority of PSSR.
Abstract:Mixed-Modal Image Retrieval (MMIR) as a flexible search paradigm has attracted wide attention. However, previous approaches always achieve limited performance, due to two critical factors are seriously overlooked. 1) The contribution of image and text modalities is different, but incorrectly treated equally. 2) There exist inherent labeling noises in describing users' intentions with text in web datasets from diverse real-world scenarios, giving rise to overfitting. We propose a Dynamic Weighted Combiner (DWC) to tackle the above challenges, which includes three merits. First, we propose an Editable Modality De-equalizer (EMD) by taking into account the contribution disparity between modalities, containing two modality feature editors and an adaptive weighted combiner. Second, to alleviate labeling noises and data bias, we propose a dynamic soft-similarity label generator (SSG) to implicitly improve noisy supervision. Finally, to bridge modality gaps and facilitate similarity learning, we propose a CLIP-based mutual enhancement module alternately trained by a mixed-modality contrastive loss. Extensive experiments verify that our proposed model significantly outperforms state-of-the-art methods on real-world datasets. The source code is available at \url{https://github.com/fuxianghuang1/DWC}.