Abstract:We propose a quantum-assisted solution for the maximum likelihood detection (MLD) of generalized spatial modulation (GSM) signals. Specifically, the MLD of GSM is first formulated as a novel polynomial optimization problem, followed by the application of a quantum algorithm, namely, the Grover adaptive search. The performance in terms of query complexity of the proposed method is evaluated and compared to the classical alternative via a numerical analysis, which reveals that under fault-tolerant quantum computation, the proposed method outperforms the classical solution if the number of data symbols and the constellation size are relatively large.
Abstract:Vehicle-to-everything (V2X) perception describes a suite of technologies used to enable vehicles to perceive their surroundings and communicate with various entities, such as other road users, infrastructure, or the network/cloud. With the development of autonomous driving, V2X perception is becoming increasingly relevant, as can be seen by the tremendous attention recently given to integrated sensing and communication (ISAC) technologies. In this context, rigid body localization (RBL) also emerges as one important technology which enables the estimation of not only target's positions, but also their shape and orientation. This article discusses the need for RBL, its benefits and opportunities, challenges and research directions, as well as its role in the standardization of the sixth-generation (6G) and beyond fifth generation (B5G) applications.
Abstract:We propose a novel solution to the rigid body localization (RBL) problem, in which the three-dimensional (3D) rotation and translation is estimated by only utilizing the range measurements between the wireless sensors on the rigid body and the anchor sensors. The proposed framework first constructs a linear Gaussian belief propagation (GaBP) algorithm to estimate the absolute sensor positions utilizing the range-based received signal model, which is used for the reconstruction of the RBL transformation model, linearized with a small-angle approximation. In light of the reformulated system, a second bivariate GaBP is designed to directly estimate the 3D rotation angles and translation distances, with an interference cancellation (IC) refinement to improve the angle estimation performance. The effectiveness of the proposed method is verified via numerical simulations, highlighting the superior performance of the proposed method against the state-of-the-art (SotA) techniques for the position, rotation, and translation estimation performance.
Abstract:Integrated sensing and communications (ISAC) and index modulation (IM) are promising technologies for beyond fifth generation (B5G) and sixth generation (6G) systems. While ISAC enables new applications, IM is attractive for its inherent energy and spectral efficiencies. In this article we propose massive IM as an enabler of ISAC, by considering transmit signals with information conveyed through the indexation of the resources utilized in their transmission, and pilot symbols exploited for sensing. In order to overcome the complexity hurdle arising from the large sizes of IM codebooks, we propose a novel message passing (MP) decoder designed under the Gaussian belief propagation (GaBP) framework exploiting a novel unit vector decomposition (UVD) of IM signals with purpose-derived novel probability distributions. The proposed method enjoys a low decoding complexity that is independent of combinatorial factors, while still approaching the performance of unfeasible state-of-the-art (SotA) search-based methods. The effectiveness of the proposed approach is demonstrated via complexity analysis and numerical results for piloted generalized quadrature spatial modulation (GQSM) systems of large sizes (up to 96 antennas).
Abstract:We propose a novel method for blind bistatic radar parameter estimation (RPE), which enables integrated sensing and communications (ISAC) by allowing passive (receive) base stations (BSs) to extract radar parameters (ranges and velocities of targets), without requiring knowledge of the information sent by an active (transmit) BS to its users. The contributed method is formulated with basis on the covariance of received signals, and under a generalized doubly-dispersive channel model compatible with most of the waveforms typically considered for ISAC, such as orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM). The original non-convex problem, which includes an $\ell_0$-norm regularization term in order to mitigate clutter, is solved not by relaxation to an $\ell_1$-norm, but by introducing an arbitrarily-tight approximation then relaxed via fractional programming (FP). Simulation results show that the performance of the proposed method approaches that of an ideal system with perfect knowledge of the transmit signal covariance with an increasing number of transmit frames.
Abstract:We propose new formulations of max-sum and max-min dispersion problems that enable solutions via the Grover adaptive search (GAS) quantum algorithm, offering quadratic speedup. Dispersion problems are combinatorial optimization problems classified as NP-hard, which appear often in coding theory and wireless communications applications involving optimal codebook design. In turn, GAS is a quantum exhaustive search algorithm that can be used to implement full-fledged maximum-likelihood optimal solutions. In conventional naive formulations however, it is typical to rely on a binary vector spaces, resulting in search space sizes prohibitive even for GAS. To circumvent this challenge, we instead formulate the search of optimal dispersion problem over Dicke states, an equal superposition of binary vectors with equal Hamming weights, which significantly reduces the search space leading to a simplification of the quantum circuit via the elimination of penalty terms. Additionally, we propose a method to replace distance coefficients with their ranks, contributing to the reduction of the number of qubits. Our analysis demonstrates that as a result of the proposed techniques a reduction in query complexity compared to the conventional GAS using Hadamard transform is achieved, enhancing the feasibility of the quantum-based solution of the dispersion problem.
Abstract:We propose new schemes for joint channel and data estimation (JCDE) and radar parameter estimation (RPE) in doubly-dispersive channels, such that integrated sensing and communications (ISAC) is enabled by user equipment (UE) independently performing JCDE, and base stations (BSs) performing RPE. The contributed JCDE and RPE schemes are designed for waveforms known to perform well in doubly-dispersive channels, under a unified model that captures the features of either legacy orthogonal frequency division multiplexing (OFDM), state-of-the-art (SotA) orthogonal time frequency space (OTFS), and next-generation affine frequency division multiplexing (AFDM) systems. The proposed JCDE algorithm is based on a Bayesian parametric bilinear Gaussian belief propagation (PBiGaBP) framework first proposed for OTFS and here shown to apply to all aforementioned waveforms, while the RPE scheme is based on a new probabilistic data association (PDA) approach incorporating a Bernoulli-Gaussian denoising, optimized via expectation maximization (EM). Simulation results demonstrate that JCDE in AFDM systems utilizing a single pilot per block significantly outperforms the SotA alternative even if the latter is granted a substantial power advantage. Similarly, the AFDM-based RPE scheme is found to outperform the OTFS-based approach, as well as the sparse Bayesian learning (SBL) technique, regardless of the waveform used.
Abstract:We describe a novel index modulation (IM) scheme exploiting a unique feature of the recently proposed affine frequency division multiplexing (AFDM) in doubly-dispersive (DD) channels. Dubbed AFDM chirp-permutation-index modulation (CPIM), the proposed method encodes additional information via the permutation of the discrete affine Fourier Transform (DAFT) chirp sequence, without any sacrifice of the various beneficial properties of the AFDM waveform in DD channels. The effectiveness of the proposed method is validated via simulation results leveraging a novel reduced-complexity minimum mean-squared-error (MMSE)-based maximum-likelihood (ML) detector, highlighting the gains over the classical AFDM. As part of the work two interesting problems related to optimizing AFDM-CPIM are identified: the optimal codebook design problem, over a discrete solution space of dimension $\binom{N!}{K}$, where $N$ is the number of subcarriers and $K$ is the number of codewords; and the ML detection problem whose solution space is of dimension $KM^N$, where $M$ is the constellation size. In order to alleviate the computational complexity of these problems and enable large-scale variations of AFDM-CPIM, the two problems are reformulated as a higher-order binary optimization problem and mapped to the well-known quantum Grover adaptive search (GAS) algorithm for their solution.
Abstract:We consider the estimation of three-dimensional (3D) radar parameters, namely, bearing or angle-of-arrival (AoA), delay or range, and Doppler shift velocity, under a mono-static multiple-input multiple-output (MIMO) joint communications and radar (JCR) system based on Orthogonal Time Frequency Space (OTFS) signals. In particular, we propose a novel two-step algorithm to estimate the three radar parameters sequentially, where the AoA is obtained first, followed by the estimation of range and velocity via a reduced two-dimensional (2D) grid maximum likelihood (ML) search in the delay-Doppler (DD) domain. Besides the resulting lower complexity, the decoupling of AoA and DD estimation enables the incorporation of an linear minimum mean square error (LMMSE) procedure in the ML estimation of range and velocity, which are found to significantly outperform State-of-the-Art (SotA) alternatives and approach the fundamental limits of the Cram`er-Rao lower bound (CRLB) and search grid resolution.
Abstract:Next-generation wireless systems will offer integrated sensing and communications (ISAC) functionalities not only in order to enable new applications, but also as a means to mitigate challenges such as doubly-dispersive channels, which arise in high mobility scenarios and/or at millimeter-wave (mmWave) and Terahertz (THz) bands. An emerging approach to accomplish these goals is the design of new waveforms, which draw from the inherent relationship between the doubly-dispersive nature of time-variant (TV) channels and the environmental features of scatterers manifested in the form of multi-path delays and Doppler shifts. Examples of such waveforms are the delay-Doppler domain orthogonal time frequency space (OTFS) and the recently proposed chirp domain affine frequency division multiplexing (AFDM), both of which seek to simultaneously combat the detrimental effects of double selectivity and exploit them for the estimation (or sensing) of environmental information. This article aims to provide a consolidated and comprehensive overview of the signal processing techniques required to support reliable ISAC over doubly-dispersive channels in beyond fifth generation (B5G)/sixth generation (6G) systems, with an emphasis on OTFS and AFDM waveforms, as those, together with the traditional orthogonal frequency division multiplexing (OFDM) waveform, suffice to elaborate on the most relevant properties of the trend. The analysis shows that OTFS and AFDM indeed enable significantly improved robustness against inter-carrier interference (ICI) arising from Doppler shifts compared to OFDM. In addition, the inherent delay-Doppler domain orthogonality of the OTFS and AFDM effective channels is found to provide significant advantages for the design and the performance of integrated sensing functionalities.