Abstract:Vehicle-to-everything (V2X) perception describes a suite of technologies used to enable vehicles to perceive their surroundings and communicate with various entities, such as other road users, infrastructure, or the network/cloud. With the development of autonomous driving, V2X perception is becoming increasingly relevant, as can be seen by the tremendous attention recently given to integrated sensing and communication (ISAC) technologies. In this context, rigid body localization (RBL) also emerges as one important technology which enables the estimation of not only target's positions, but also their shape and orientation. This article discusses the need for RBL, its benefits and opportunities, challenges and research directions, as well as its role in the standardization of the sixth-generation (6G) and beyond fifth generation (B5G) applications.
Abstract:We propose a novel solution to the rigid body localization (RBL) problem, in which the three-dimensional (3D) rotation and translation is estimated by only utilizing the range measurements between the wireless sensors on the rigid body and the anchor sensors. The proposed framework first constructs a linear Gaussian belief propagation (GaBP) algorithm to estimate the absolute sensor positions utilizing the range-based received signal model, which is used for the reconstruction of the RBL transformation model, linearized with a small-angle approximation. In light of the reformulated system, a second bivariate GaBP is designed to directly estimate the 3D rotation angles and translation distances, with an interference cancellation (IC) refinement to improve the angle estimation performance. The effectiveness of the proposed method is verified via numerical simulations, highlighting the superior performance of the proposed method against the state-of-the-art (SotA) techniques for the position, rotation, and translation estimation performance.
Abstract:We consider a novel algorithm, for the completion of partially observed low-rank matrices in a structured setting where each entry can be chosen from a finite discrete alphabet set, such as in common recommender systems. The proposed low-rank matrix completion (MC) method is an improved variation of state-of-the-art (SotA) discrete aware matrix completion method which we previously proposed, in which discreteness is enforced by an $\ell_0$-norm regularizer, not by replaced with the $\ell_1$-norm, but instead approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework. Simulation results demonstrate the superior performance of the new method compared to the SotA techniques as well as the earlier $\ell_1$-norm-based discrete-aware matrix completion approach.
Abstract:This white paper describes a proposed article that will aim to provide a thorough study of the evolution of the typical paradigm of wireless localization (WL), which is based on a single point model of each target, towards wireless rigid body localization (W-RBL). We also look beyond the concept of RBL itself, whereby each target is modeled as an independent multi-point three-dimensional (3D), with shape enforced via a set of conformation constraints, as a step towards a more general approach we refer to as soft-connected RBL, whereby an ensemble of several objects embedded in a given environment, is modeled as a set of soft-connected 3D objects, with rigid and soft conformation constraints enforced within each object and among them, respectively. A first intended contribution of the full version of this article is a compact but comprehensive survey on mechanisms to evolve WL algorithms in W-RBL schemes, considering their peculiarities in terms of the type of information, mathematical approach, and features the build on or offer. A subsequent contribution is a discussion of mechanisms to extend W-RBL techniques to soft-connected rigid body localization (SCW-RBL) algorithms.