This white paper describes a proposed article that will aim to provide a thorough study of the evolution of the typical paradigm of wireless localization (WL), which is based on a single point model of each target, towards wireless rigid body localization (W-RBL). We also look beyond the concept of RBL itself, whereby each target is modeled as an independent multi-point three-dimensional (3D), with shape enforced via a set of conformation constraints, as a step towards a more general approach we refer to as soft-connected RBL, whereby an ensemble of several objects embedded in a given environment, is modeled as a set of soft-connected 3D objects, with rigid and soft conformation constraints enforced within each object and among them, respectively. A first intended contribution of the full version of this article is a compact but comprehensive survey on mechanisms to evolve WL algorithms in W-RBL schemes, considering their peculiarities in terms of the type of information, mathematical approach, and features the build on or offer. A subsequent contribution is a discussion of mechanisms to extend W-RBL techniques to soft-connected rigid body localization (SCW-RBL) algorithms.