We propose a quantum-assisted solution for the maximum likelihood detection (MLD) of generalized spatial modulation (GSM) signals. Specifically, the MLD of GSM is first formulated as a novel polynomial optimization problem, followed by the application of a quantum algorithm, namely, the Grover adaptive search. The performance in terms of query complexity of the proposed method is evaluated and compared to the classical alternative via a numerical analysis, which reveals that under fault-tolerant quantum computation, the proposed method outperforms the classical solution if the number of data symbols and the constellation size are relatively large.