This paper proposes the orthogonal time frequency space-based code index modulation (OTFS-CIM) scheme, a novel wireless communication system that combines OTFS modulation, which enhances error performance in high-mobility Rayleigh channels, with CIM technique, which improves spectral and energy efficiency, within a single-input multiple-output (SIMO) architecture. The proposed system is evaluated through Monte Carlo simulations for various system parameters. Results show that increasing the modulation order degrades performance, while more receive antennas enhance it. Comparative analyses of error performance, throughput, spectral efficiency, and energy saving demonstrate that OTFS-CIM outperforms traditional OTFS and OTFS-based spatial modulation (OTFS-SM) systems. Also, the proposed OTFS-CIM system outperforms benchmark systems in many performance metrics under high-mobility scenarios, making it a strong candidate for sixth generation (6G) and beyond.