Abstract:The Artificial Intelligence Satellite Telecommunications Testbed (AISTT), part of the ESA project SPAICE, is focused on the transformation of the satellite payload by using artificial intelligence (AI) and machine learning (ML) methodologies over available commercial off-the-shelf (COTS) AI chips for on-board processing. The objectives include validating artificial intelligence-driven SATCOM scenarios such as interference detection, spectrum sharing, radio resource management, decoding, and beamforming. The study highlights hardware selection and payload architecture. Preliminary results show that ML models significantly improve signal quality, spectral efficiency, and throughput compared to conventional payload. Moreover, the testbed aims to evaluate the performance and application of AI-capable COTS chips in onboard SATCOM contexts.
Abstract:Spiking neural networks (SNNs) implemented on neuromorphic processors (NPs) can enhance the energy efficiency of deployments of artificial intelligence (AI) for specific workloads. As such, NP represents an interesting opportunity for implementing AI tasks on board power-limited satellite communication spacecraft. In this article, we disseminate the findings of a recently completed study which targeted the comparison in terms of performance and power-consumption of different satellite communication use cases implemented on standard AI accelerators and on NPs. In particular, the article describes three prominent use cases, namely payload resource optimization, onboard interference detection and classification, and dynamic receive beamforming; and compare the performance of conventional convolutional neural networks (CNNs) implemented on Xilinx's VCK5000 Versal development card and SNNs on Intel's neuromorphic chip Loihi 2.
Abstract:Satellite communications (SatCom) are crucial for global connectivity, especially in the era of emerging technologies like 6G and narrowing the digital divide. Traditional SatCom systems struggle with efficient resource management due to static multibeam configurations, hindering quality of service (QoS) amidst dynamic traffic demands. This paper introduces an innovative solution - real-time adaptive beamforming on multibeam satellites with software-defined payloads in geostationary orbit (GEO). Utilizing a Direct Radiating Array (DRA) with circular polarization in the 17.7 - 20.2 GHz band, the paper outlines DRA design and a supervised learning-based algorithm for on-board beamforming. This adaptive approach not only meets precise beam projection needs but also dynamically adjusts beamwidth, minimizes sidelobe levels (SLL), and optimizes effective isotropic radiated power (EIRP).
Abstract:The latest satellite communication (SatCom) missions are characterized by a fully reconfigurable on-board software-defined payload, capable of adapting radio resources to the temporal and spatial variations of the system traffic. As pure optimization-based solutions have shown to be computationally tedious and to lack flexibility, machine learning (ML)-based methods have emerged as promising alternatives. We investigate the application of energy-efficient brain-inspired ML models for on-board radio resource management. Apart from software simulation, we report extensive experimental results leveraging the recently released Intel Loihi 2 chip. To benchmark the performance of the proposed model, we implement conventional convolutional neural networks (CNN) on a Xilinx Versal VCK5000, and provide a detailed comparison of accuracy, precision, recall, and energy efficiency for different traffic demands. Most notably, for relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$\times$ as compared to the CNN-based reference platform. Our findings point to the significant potential of neuromorphic computing and SNNs in supporting on-board SatCom operations, paving the way for enhanced efficiency and sustainability in future SatCom systems.