Abstract:Fluid antenna multiple access (FAMA), enabled by the fluid antenna system (FAS), offers a new and straightforward solution to massive connectivity. Previous results on FAMA were primarily based on narrowband channels. This paper studies the adoption of FAMA within the fifth-generation (5G) orthogonal frequency division multiplexing (OFDM) framework, referred to as OFDM-FAMA, and evaluate its performance in broadband multipath channels. We first design the OFDM-FAMA system, taking into account 5G channel coding and OFDM modulation. Then the system's achievable rate is analyzed, and an algorithm to approximate the FAS configuration at each user is proposed based on the rate. Extensive link-level simulation results reveal that OFDM-FAMA can significantly improve the multiplexing gain over the OFDM system with fixed-position antenna (FPA) users, especially when robust channel coding is applied and the number of radio-frequency (RF) chains at each user is small.
Abstract:Spatial Modulation (SM) can utilize the index of the transmit antenna (TA) to transmit additional information. In this paper, to improve the performance of SM, a non-uniform constellation (NUC) and pre-scaling coefficients optimization design scheme is proposed. The bit-interleaved coded modulation (BICM) capacity calculation formula of SM system is firstly derived. The constellation and pre-scaling coefficients are optimized by maximizing the BICM capacity without channel state information (CSI) feedback. Optimization results are given for the multiple-input-single-output (MISO) system with Rayleigh channel. Simulation result shows the proposed scheme provides a meaningful performance gain compared to conventional SM system without CSI feedback. The proposed optimization design scheme can be a promising technology for future 6G to achieve high-efficiency.
Abstract:In this paper, the receive generalized spatial modulation (RGSM) scheme with reconfigurable intelligent surfaces (RIS) assistance is proposed. The RIS group controllers change the reflected phases of the RIS elements to achieve the selection of receive antennas and phase shift keying (PSK) modulation, and the amplitudes of the received symbols are adjusted by changing the activation states of the elements to achieve amplitude phase shift keying (APSK) modulation. Compared with the existing RIS-aided receive generalized space shift keying (RIS-RGSSK) scheme, the proposed scheme realizes that the selected antennas respectively receive different modulation symbols, and only adds the process to control the modulated phases and the activation states of elements. The proposed scheme has better bit error rate (BER) performance than the RIS-RGSSK scheme at the same rate. In addition, the results show that for low modulation orders, the proposed scheme will perform better with PSK, while for high modulation order, APSK is better. The proposed scheme is a promising scheme for future wireless communication to achieve high-efficiency.