Refer to the report for detailed contributions
Abstract:This paper develops a semiparametric Bayesian instrumental variable analysis method for estimating the causal effect of an endogenous variable when dealing with unobserved confounders and measurement errors with partly interval-censored time-to-event data, where event times are observed exactly for some subjects but left-censored, right-censored, or interval-censored for others. Our method is based on a two-stage Dirichlet process mixture instrumental variable (DPMIV) model which simultaneously models the first-stage random error term for the exposure variable and the second-stage random error term for the time-to-event outcome using a bivariate Gaussian mixture of the Dirichlet process (DPM) model. The DPM model can be broadly understood as a mixture model with an unspecified number of Gaussian components, which relaxes the normal error assumptions and allows the number of mixture components to be determined by the data. We develop an MCMC algorithm for the DPMIV model tailored for partly interval-censored data and conduct extensive simulations to assess the performance of our DPMIV method in comparison with some competing methods. Our simulations revealed that our proposed method is robust under different error distributions and can have superior performance over its parametric counterpart under various scenarios. We further demonstrate the effectiveness of our approach on an UK Biobank data to investigate the causal effect of systolic blood pressure on time-to-development of cardiovascular disease from the onset of diabetes mellitus.
Abstract:Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
Abstract:Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Abstract:Fine-tuning with Reinforcement Learning with Human Feedback (RLHF) is essential for aligning large language models (LLMs). However, RLHF often encounters significant memory challenges. This study is the first to examine memory usage in the RLHF context, exploring various memory management strategies and unveiling the reasons behind excessive memory consumption. Additionally, we introduce a simple yet effective approach that substantially reduces the memory required for RLHF fine-tuning.
Abstract:Recent innovations in autonomous drones have facilitated time-optimal flight in single-drone configurations and enhanced maneuverability in multi-drone systems through the application of optimal control and learning-based methods. However, few studies have achieved time-optimal motion planning for multi-drone systems, particularly during highly agile maneuvers or in dynamic scenarios. This paper presents a decentralized policy network for time-optimal multi-drone flight using multi-agent reinforcement learning. To strike a balance between flight efficiency and collision avoidance, we introduce a soft collision penalty inspired by optimization-based methods. By customizing PPO in a centralized training, decentralized execution (CTDE) fashion, we unlock higher efficiency and stability in training, while ensuring lightweight implementation. Extensive simulations show that, despite slight performance trade-offs compared to single-drone systems, our multi-drone approach maintains near-time-optimal performance with low collision rates. Real-world experiments validate our method, with two quadrotors using the same network as simulation achieving a maximum speed of 13.65 m/s and a maximum body rate of 13.4 rad/s in a 5.5 m * 5.5 m * 2.0 m space across various tracks, relying entirely on onboard computation.
Abstract:It is extremely memory-hungry to train Large Language Models (LLM). To solve this problem, existing work exploits the combination of CPU and GPU for the training process, such as ZeRO-Offload. Such a technique largely democratizes billion-scale model training, making it possible to train with few consumer graphics cards. However, based on our observation, existing frameworks often provide coarse-grained memory management and require experienced experts in configuration tuning, leading to suboptimal hardware utilization and performance. This paper proposes ProTrain, a novel training system that intelligently balances memory usage and performance by coordinating memory, computation, and IO. ProTrain achieves adaptive memory management through Chunk-Based Model State Management and Block-Wise Activation Management, guided by a Memory-Aware Runtime Profiler without user intervention. ProTrain does not change the training algorithm and thus does not compromise accuracy. Experiments show that ProTrain improves training throughput by 1.43$\times$ to 2.71$\times$ compared to the SOTA training systems.
Abstract:The autonomous quadrotor's flying speed has kept increasing in the past 5 years, especially in the field of autonomous drone racing. However, the majority of the research mainly focuses on the aggressive flight of a single quadrotor. In this letter, we propose a novel method called Pairwise Model Predictive Control (PMPC) that can guide two quadrotors online to fly through the waypoints with minimum time without collisions. The flight task is first modeled as a nonlinear optimization problem and then an efficient two-step mass point velocity search method is used to provide initial values and references to improve the solving efficiency so that the method can run online with a frequency of 50 Hz and can handle dynamic waypoints. The simulation and real-world experiments validate the feasibility of the proposed method and in the real-world experiments, the two quadrotors can achieve a top speed of 8.1m/s in a 6-waypoint racing track in a compact flying arena of 6m*4m*2m.
Abstract:Over the past decade, there has been a remarkable surge in utilizing quadrotors for various purposes due to their simple structure and aggressive maneuverability, such as search and rescue, delivery and autonomous drone racing, etc. One of the key challenges preventing quadrotors from being widely used in these scenarios is online waypoint-constrained time-optimal trajectory generation and control technique. This letter proposes an imitation learning-based online solution to efficiently navigate the quadrotor through multiple waypoints with time-optimal performance. The neural networks (WN&CNets) are trained to learn the control law from the dataset generated by the time-consuming CPC algorithm and then deployed to generate the optimal control commands online to guide the quadrotors. To address the challenge of limited training data and the hover maneuver at the final waypoint, we propose a transition phase strategy that utilizes polynomials to help the quadrotor 'jump over' the stop-and-go maneuver when switching waypoints. Our method is demonstrated in both simulation and real-world experiments, achieving a maximum speed of 7 m/s while navigating through 7 waypoints in a confined space of 6.0 m * 4.0 m * 2.0 m. The results show that with a slight loss in optimality, the WN&CNets significantly reduce the processing time and enable online optimal control for multiple-waypoint-constrained flight tasks.
Abstract:Full-duplex (FD) wireless can significantly enhance spectrum efficiency but requires effective self-interference (SI) cancellers. RF SI cancellation (SIC) via frequency-domain equalization (FDE), where bandpass filters channelize the SI, is suited for integrated circuits (ICs). In this paper, we explore the limits and higher layer challenges associated with using such cancellers. We evaluate the performance of a custom FDE-based canceller using two testbeds; one with mobile FD radios and the other with upgraded, static FD radios in the PAWR COSMOS testbed. The latter is a lasting artifact for the research community, alongside a dataset containing baseband waveforms captured on the COSMOS FD radios, facilitating FD-related experimentation at the higher networking layers. We evaluate the performance of the FDE-based FD radios in both testbeds, with experiments showing 95 dB overall achieved SIC (52 dB from RF SIC) across 20 MHz bandwidth, and an average link-level FD rate gain of 1.87x. We also conduct experiments in (i) uplink-downlink networks with inter-user interference, and (ii) heterogeneous networks with half-duplex and FD users. The experimental FD gains in the two types of networks depend on the users' SNR values and the number of FD users, and are 1.14x-1.25x and 1.25x-1.73x, respectively, confirming previous analytical results.
Abstract:Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.