Abstract:Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
Abstract:Despite the recent ubiquity of large language models and their high zero-shot prompted performance across a wide range of tasks, it is still not known how well they perform on tasks which require processing of potentially idiomatic language. In particular, how well do such models perform in comparison to encoder-only models fine-tuned specifically for idiomaticity tasks? In this work, we attempt to answer this question by looking at the performance of a range of LLMs (both local and software-as-a-service models) on three idiomaticity datasets: SemEval 2022 Task 2a, FLUTE, and MAGPIE. Overall, we find that whilst these models do give competitive performance, they do not match the results of fine-tuned task-specific models, even at the largest scales (e.g. for GPT-4). Nevertheless, we do see consistent performance improvements across model scale. Additionally, we investigate prompting approaches to improve performance, and discuss the practicalities of using LLMs for these tasks.
Abstract:Compositionality in language models presents a problem when processing idiomatic expressions, as their meaning often cannot be directly derived from their individual parts. Although fine-tuning and other optimization strategies can be used to improve representations of idiomatic expressions, this depends on the availability of relevant data. We present the Noun Compound Synonym Substitution in Books - NCSSB - datasets, which are created by substitution of synonyms of potentially idiomatic English noun compounds in public domain book texts. We explore the trade-off between data quantity and quality when training models for idiomaticity detection, in conjunction with contextual information obtained locally (from the surrounding sentences) or externally (through language resources). Performance on an idiomaticity detection task indicates that dataset quality is a stronger factor for context-enriched models, but that quantity also plays a role in models without context inclusion strategies.