Abstract:Language models (LMs) are pre-trained on raw text datasets to generate text sequences token-by-token. While this approach facilitates the learning of world knowledge and reasoning, it does not explicitly optimize for linguistic competence. To bridge this gap, we propose L2T, a pre-training framework integrating Language Learning Tasks alongside standard next-token prediction. Inspired by human language acquisition, L2T transforms raw text into structured input-output pairs to provide explicit linguistic stimulation. Pre-training LMs on a mixture of raw text and L2T data not only improves overall performance on linguistic competence benchmarks but accelerates its acquisition, while maintaining competitive performance on general reasoning tasks.
Abstract:Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.




Abstract:Human processing of idioms relies on understanding the contextual sentences in which idioms occur, as well as language-intrinsic features such as frequency and speaker-intrinsic factors like familiarity. While LLMs have shown high performance on idiomaticity detection tasks, this success may be attributed to reasoning shortcuts in existing datasets. To this end, we construct a novel, controlled contrastive dataset designed to test whether LLMs can effectively use context to disambiguate idiomatic meaning. Additionally, we explore how collocational frequency and sentence probability influence model performance. Our findings reveal that LLMs often fail to resolve idiomaticity when it is required to attend to the surrounding context, and that models perform better on sentences that have higher likelihood. The collocational frequency of expressions also impacts performance. We make our code and dataset publicly available.




Abstract:Despite the recent ubiquity of large language models and their high zero-shot prompted performance across a wide range of tasks, it is still not known how well they perform on tasks which require processing of potentially idiomatic language. In particular, how well do such models perform in comparison to encoder-only models fine-tuned specifically for idiomaticity tasks? In this work, we attempt to answer this question by looking at the performance of a range of LLMs (both local and software-as-a-service models) on three idiomaticity datasets: SemEval 2022 Task 2a, FLUTE, and MAGPIE. Overall, we find that whilst these models do give competitive performance, they do not match the results of fine-tuned task-specific models, even at the largest scales (e.g. for GPT-4). Nevertheless, we do see consistent performance improvements across model scale. Additionally, we investigate prompting approaches to improve performance, and discuss the practicalities of using LLMs for these tasks.