Abstract:Pre-training on graph neural networks (GNNs) aims to learn transferable knowledge for downstream tasks with unlabeled data, and it has recently become an active research area. The success of graph pre-training models is often attributed to the massive amount of input data. In this paper, however, we identify the curse of big data phenomenon in graph pre-training: more training data do not necessarily lead to better downstream performance. Motivated by this observation, we propose a better-with-less framework for graph pre-training: fewer, but carefully chosen data are fed into a GNN model to enhance pre-training. The proposed pre-training pipeline is called the data-active graph pre-training (APT) framework, and is composed of a graph selector and a pre-training model. The graph selector chooses the most representative and instructive data points based on the inherent properties of graphs as well as predictive uncertainty. The proposed predictive uncertainty, as feedback from the pre-training model, measures the confidence level of the model in the data. When fed with the chosen data, on the other hand, the pre-training model grasps an initial understanding of the new, unseen data, and at the same time attempts to remember the knowledge learned from previous data. Therefore, the integration and interaction between these two components form a unified framework (APT), in which graph pre-training is performed in a progressive and iterative way. Experiment results show that the proposed APT is able to obtain an efficient pre-training model with fewer training data and better downstream performance.
Abstract:Knowledge editing aims to change language models' performance on several special cases (i.e., editing scope) by infusing the corresponding expected knowledge into them. With the recent advancements in large language models (LLMs), knowledge editing has been shown as a promising technique to adapt LLMs to new knowledge without retraining from scratch. However, most of the previous studies neglect the multi-lingual nature of some main-stream LLMs (e.g., LLaMA, ChatGPT and GPT-4), and typically focus on monolingual scenarios, where LLMs are edited and evaluated in the same language. As a result, it is still unknown the effect of source language editing on a different target language. In this paper, we aim to figure out this cross-lingual effect in knowledge editing. Specifically, we first collect a large-scale cross-lingual synthetic dataset by translating ZsRE from English to Chinese. Then, we conduct English editing on various knowledge editing methods covering different paradigms, and evaluate their performance in Chinese, and vice versa. To give deeper analyses of the cross-lingual effect, the evaluation includes four aspects, i.e., reliability, generality, locality and portability. Furthermore, we analyze the inconsistent behaviors of the edited models and discuss their specific challenges.
Abstract:Recently, graph pre-training has attracted wide research attention, which aims to learn transferable knowledge from unlabeled graph data so as to improve downstream performance. Despite these recent attempts, the negative transfer is a major issue when applying graph pre-trained models to downstream tasks. Existing works made great efforts on the issue of what to pre-train and how to pre-train by designing a number of graph pre-training and fine-tuning strategies. However, there are indeed cases where no matter how advanced the strategy is, the "pre-train and fine-tune" paradigm still cannot achieve clear benefits. This paper introduces a generic framework W2PGNN to answer the crucial question of when to pre-train (i.e., in what situations could we take advantage of graph pre-training) before performing effortful pre-training or fine-tuning. We start from a new perspective to explore the complex generative mechanisms from the pre-training data to downstream data. In particular, W2PGNN first fits the pre-training data into graphon bases, each element of graphon basis (i.e., a graphon) identifies a fundamental transferable pattern shared by a collection of pre-training graphs. All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training. In this manner, the feasibility of pre-training can be quantified as the generation probability of the downstream data from any generator in the generator space. W2PGNN provides three broad applications, including providing the application scope of graph pre-trained models, quantifying the feasibility of performing pre-training, and helping select pre-training data to enhance downstream performance. We give a theoretically sound solution for the first application and extensive empirical justifications for the latter two applications.